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Abstract: In this study, optimization problems with general equality and inequality constraints are discussed.

Fustly, the original problems are changed mto parametric programming problems with only mequality
constraints and these two problems are equivalent with each other if the parameter is suitable. Then, we give
a new idea called first-order feasible condition, which is used to solve the changed problems. Under some
reasonable conditions, the global and superlinear convergence is shown.
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INTRODUCTION

Tt is well known that the Sequential Quadratic
Programming (SQP) method 1s one of the most effective
method to solve the inequality constrained optimization.
Because of its superlinear convergence, there have
existed a plenty of nonlinear

literatures  about

programming. In order to promote the rate of
convergence, 1t 1s risen some improved algorithms
(Facchinei and Lucidi, 1995). But the almost above
algorithms is  applied to inequality constrained
optimization. So it 1s needed to expanded to the general
constrained optimization (Jian ef al., 2005; Jian and Zhu,
2003). However, as we know that the direction obtained
by solving the QP subproblem is not a feasible direction.
We need to revise the direction, the first-order feasible
descent condition 18 proposed in Panier and Tits (1987)
which will make it necessary to solve two or three QP
problems per single iteration. Zhu and JTian (2005) gave an
easier {irst-order feasible condition and obtained a revised
feasible descent direction by using a line search which
always can be implemented to establish a convex
combination.

To solve optimization problems with general equality
and inequality constraints, we use a penalty function as
the merit function which to change the original problem
into parametric programming problems with only
mequality constraints. Thern, based on the method in
Zhu and Tian (2005), a feasible SQP method for general

constrained optimization is established.

DESCRIPTION OF ALGORITHM

In this study, we consider the following nonlinear
programming problem

min {f{x)|xeR} (1)
where

R = {xeB"|£(x)<0, jeL;; £(x) = 0, jeL,}
L={1.,. .. m}L,={m+1,. . m:L=LuL,

For the parameter ¢>0, the definition of the penalty
function F(x): B*~E' is
F(x) = fy(x) + cF(x).

where

F(x)= Z f(x).

1€ly

IfL, = o, let F(x) = 0 and the problem (1) is the inequality
constrained optimization.

Now, we consider the auxiliary programming of the
problem (1)

min {F,(x)|xeR, = {xeE"|f(x)<0, jeL}} (2
Denote
16 = fieL|£60 = 0}

Throughout this study, the following assumptions are
assumed.
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H1:R, #0,£(j =0, ., m)are continuously differentiable;
H 2: The vectors (vf(x), je{jL,|fi(x) =0} UL,} are linearly
mdependent.

For the sake of simplicity, we denote

g(x;c) = vF (%), g(x) = vf(x), H(x;c) = 7F(x),
Hi(x) = v*6(x), N(x), = (g(x), jeL)

D(x)=diag(D,(x).je L) D.(x) = {sz (X.),j L,
0,jeL,

Q(x) = (N(x)"NGx) + D (x)) ™ Nx)*

Ti(x) = -Q(x)g(x) = (m(x), jel.),
n(x;e) = -QG0g(xe) = (m(x;e). j€L)

According to Lemma 3 in Jian and Thu (2003), we can
obtain the following result.

Lemma 1: For any xeR,, (N(x)"N(x)+D(x)) is a positive
definite matrix, moreover, m(x) and m(x;c) satisfy the
following conditions:

(%) = W), VieL,, m(x) = m(x;0)-c, V€L,

Lemma 2: If the parameter ¢ > max {|m(x)|: jeL,}, thenx is
a KKT point of the problem (1) if and only if x is a KKT
point of the problem (2).

Now, we state the basic algorithm as follows.

Algorithm A:

Step 0 Initialization: Choose x'eR., Z, a compact set of
symmetric and positive definite matrices, B, = B(x" )X,
parameters €, v, Be (0,1), 82, we(0,1/2), te (2,3), {&,
Cp)=(0,20).

Setk=1;

Step 1: Adjust parameters ¢: Compute
ty :max{‘n](xk)‘ jE Lz} +¢,,6, =
Irlax{tk’ckf1 + é},ckf1 <t

Co G =L,

Step 2: Obtain (df,i*) by solving the following QP
subproblem at x*

: k. T 1 T
ming(x";c, ) d+5d B.d (3)

stfi(x*)+g,(x*)7d<0,jel.

Denote E, = {j|fi(x*)+g,(x*)'d = 0}. If d*, STOP.
Step 3: Compute N | Dk,Qk,dk,f'Jk as follows:
N, = N(x*) = (g;(x"),j € L), D, = D(x*) = diag(D{, j L)

Q = Q) = (NN, + D,y NE & =df - Qida[ e+ 75)

1”,«]1; _ f, (x* + drLjek, 4
0,jeLVE,

where e = (1,.., 1)V If

gcse, " d) = mind- gz o] ()
gotostep 5.
Step 4: Let A=1:
Lemma 5: If
E,(x* +2d9) <, )+ adglxie, ' (©)
f(x+Ad9<0, jel. Q)

Let 4, = A and go to step 7, Otherwise go to step
Lemma 6.

Let A = 1724, if A<g, gotostep 5, Otherwise repeat
Lemma 5.
Step 5: Compute a direction s* satisfying the first-order
feasible condition by using d*,. Let

kpk = —g(xk;cszdﬁ ) ()
q = p(1-By)dy +Bs™)

(1-Pig(x* ¢, ) df + Paixtic,)'sk < Bgx*ic ) df (9)

2

where P, is the first number in the sequence {1

b3 | =
| =

satistying

Step 6: Compute the first number mn the sequence
{1’1 1’..} satisfying:

>

274
F (x*+2aq") <F (x)+vAig(x¥e,) " (10)

£ (x"+Aq9)<0, jeL (11
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Letd* =g~
Step 7 Update:
Choose B, X, X' =x+Ad  k=k+1. Goback tostep 1.

Remarks: In step 5 the first-order feasible condition is
defined as R: g{(x")'s"<0, jel(x). For example, according to
the third step n the above algorithm, the following
direction satisfying condition R:

o= e
where e = {1,1,...,1}€E", as amatter of fact, because

Nps* = |d5[NINL (NN, + D,) e =

— [ |le+ || D NN, + D, Y e,

it can be seen that when jeI(x*),Df =f(x"*)=10.50
g (x")Ts" = fHdEH <0,jeI(x").

GLOBAL CONVERGENCE OF ALGORITHM

TLemma 3: If {x*} is bounded, then ¢, = Gy, éC, for kzk,.
Now we make another assumption and let it hold mn the
remainder of this study.

H 3: {x"} is bounded, B, consistent positive definite, that
is to say, there exists bza=0 such that a|y|*<y'By<b]|’,
vk, yeErandk=1,2....

Lemma 4: (1) If d° =0, then x* is a KKT point of the

problem (2).
(2)If d* =0, then

g(xk;ck)Td}U‘ =—py <O;g(xk;ck)T qk <0

gj(xk)T qk <0,jel(xk)

i.e., q"is a feasible direction of descent of the problem (2).
3) There exists a constant a;>0, such that g(x"c,)" q"z-

I
g’

Proof: (1) It 1s evident according to the definition of the
KKT point.
(2) First of all, it is known by (3) that

T
k,
g(x 2 Gy

T

gj(xk) E<0,jel(x"),

0

then, by (9), there exists B,€[0,1] such that

g, (%) g = pug, (%) ((1-B, )k + Bs)

T .
< peBig; (xk) ¥ <0, je I(x5),

and

g(x10,) ¢ = pg(x"ic, ) ((1-B, )dk +B,s" )=
P ((1_Bk )g(xk;ck )T ds + Bkg(xk;ck )T Sk)

<p, -Bg(xk;ck)TdE =—p;-0<0

3) Because {x*} is bounded and B, is positive definite. Tt
is clear that d%, o, p, are bounded. So, from (8), there
exists a comstant a>0, such that p,zc|q"’, moreover,
there exists a constants a>0 such that g(xc,)" g <-6.
o<l

Now we turn to prove the global convergence of
algorithm A. Suppose {x"} generated by the algorithm is
an nfinite sequence. Since there are only fmitely many
choices for sets E,cL and d¥,i*,q" are bounded Without

loss of generality, assume that there exists an infinite
subsequence K such that

\ e o
x* »x,B, »B,d >d i >4,

¢ —q,E,=EkeK

(12)

where E 13 a constant sets.

To desire the global convergence of Algorithm A, the
same as cite Zhu and Jiam (2005), similarly, strength the
first-order feasible condition R: For {dﬁ}keK . ifd'z0,
there exists 80 such that

gj(xk)Tsk <-0,Vje I(X*)

when keK and k is large enough.
It is clear that s* generated by the above method also
satisfies this condition.

Theorem 1: The algorithm either stops at the KKT point
of the problem (1) in finite iteration, or generates an
infinite sequence {x*} any accumulation point x* of which
is a KKT point of the problem (1).

Proof: According to lemma 2, it 1s known that the KKT
point of the problem (1) is the KKT point of the auxiliary
problem (2) if the parameter c¢ 1s large enough. So we only
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need to prove that the algorithm either stops at the KKT
pot of the problem (2) m finite iteration, or generates an
infinite sequence {x"} any accumulation point x* of which
is a KKT point of the auxiliary problem (2) if the parameter
¢ satisfied some condition.

Tt is clear that the first part holds. Now we assume
that the algorithm generates an infinite sequence {x*} of
which x* is a given accumulation. Now, we prove d5,—0,
keK. Firstof all, inview of (5) (6) (10) and (2) of lemma 14,
it is evident that {F,(x")} is monotonous decreasing.
Hence, considering to x*—x', keK and assumption (2.1), it

1s holds that
F(x5)=F(x), k—e (13)

By the construction of Algorithm A, there are two
cycles between step 1 and step 7, one of which generates
{x%} with the form x*'! = x*+4,q" and the other generates it
with the form x®' = x+1,d" we prove that the claim
according the two cycles.

A there exists K,eK(|K,| = «), such that for all keK,,
e+

®1 = %"+ 4,d" is generated by step 4 and step 7, then from
(5), (6), we know

0=1lim (FE (Xk+1 ) -F (Xk )) < im%Mg (xk;c)T

kK, kekK;

d < i (fast‘; Hf’) <0
keK)

S0, dlg —0,keK,. Since d: —>d;,k =K., it 1s clear that

dy=0.ie,df >0,kecK.

B: Without loss of generality, we assume that for all keK,
™! = ¥+A,d" is generated by step 6 and step 7. Suppose
that desired conclusion 1s false, 1.e., d;‘ £0.

The corresponding QP problem at x* is
ming(x"c) d+ LaBa
’ 2 (14)
stf(x)+g,(x)'d<0,jeL.

Tt is clear that d’; = ( 18 aunique solution of (14). So,
g(x*;c)T d: <0

According to the first-order feasible condition R' and
the proof of lemma 13, it can be seen

g(X*;C)T q < 0.g; (x*)T q" <0,je I*il(x*)

For keK, k large enough, we have

< %g(x*;c)T q* <0

_%gj(x*)Tq* <0,jel,

9
—
¥~
"
—
)
s
L
I

Thereby it is easy to prove that the step size A,
generated by step 6 satisfies A>Ay = {A, keK}>0, keK.
So, from (10) (13), we get

0= Jim{E (¥} = E.(x"}) = Jim

keK keK

(U?\.kg(xk;c)T qk) < %Uh*g(xk;c)T q <0

It is a contradiction, which shows thatd! — 0,k e K,
k—oo. Since d’ =0 is the solution of (14), then X isa

KKT point of the problem (1).
THE RATE OF CONVERGENCE

Here, we continue to discuss the convergence rate of
the algorithm. For this purpose, we add an additional
assumption on B,

H 4: {x*} is bounded with an accumulation point x* and
B,—B., k—e. The second-order sufficiency conditions
with strict complementary are satisfied at the KKT point
x and the corresponding multipliers p*.

According to H 4 and Proposition 1 in research Panier
and Tits (1987), we can obtain the following conclusion:

Lemma 5: 1im ka” _xE H = (. Thereby, the entire sequence

k—em

{x*} converges to x*, ie., xkﬂx*, koo,
Lemma 6: For k large enough, then

(1) limd; =0

(2) Assume ﬁﬁ‘ and ur are the corresponding multipliers
* ., *
of df andx", then i > p,jelL\L,if > p +ejel,

&
E, =I(x")=1,

Proof: (1) Since x*—x’, B,~B., k—, considering
Theorem 1, it is clear to see that lim dlg =0.
k—eo

2) Since (d¥,ii*) is a KK T point pair of (3), then

1}
g(x";0)+ N, i + B.dE =0
fx")y+g (xV a0 =0,je L (15)
1 g] 0 ] J
(D, + diag(f, (x")g, (x" ) d},je L)) =0
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Denote
R, = NN, +D, + diag(f (x")g,(x*)"d},je L)
Then, from (15), we get
R, 0" = NI (g(x";c)+ B.d") (16)
Denote
N. =N(x), D. = D), Q. = Q)

because dlg —>0,weget R, > NIN, +D,. It is obvious
that (NN, + D.)" exists. Tt follows that R,' exists and
R, = (NIN,+ D,y fork large enough. So

it = —R:NE (g(xk;c) + Bkdlg) — —Q,,g(x*;c) =a(x":0)

In addition, since x" is a KK T point of the problem (1),
then

go(x )+ N’ = 0,f,(x )y = £ (x Ju; = 0,je L, Do’ =0,
Tt follows that

Nrg, (X )+ N/ N + Do’ =0

le, U = -Qugx) = n(x"). According to Lemma 1, we
obtained that m{x) = m(x;0), Vjelal, m(x) = m(x:c)-c, VijeL,.
The first part of this lemma holds.

From B, = {j|f(x")+g(x*)"d = 0} and d* — 0 we obtained

E.cl.. With the strict complementary condition, we know
that if jeL,, then @f — u; > 0;

Tf jel\L,, then G — u +c¢ 0. So whenk large enough,
@t > 0, jel., it follows that Lo, So Ey=L.

Lemma 7: (A) For k large enough, there exists a constant
1>0 such that

1
~ o 2
S () £z, z, = (U F ()L VE () A < —ad|
1€l 1€l
(17
2) Denote
& =i e a®)
then d* computed from (4) satisfies that

d* =df+df,

@]~

#l=of) 09

2

Proof: (A) From lemma 6, we know ﬁf =0, so, there exists

a constant >0 such that

YU (xF) == Y [f(x5) < -ng

jel 1€k

Since df is a KKT point of (3), then

g(x0)+ N, i* + B ds = 0, (20)
(f, (") +g,(x)Td5)if =0,jeL
g(x";0)"dy = ~(dy)" Byds + > 0, (x")
jel (21)

e e
< -a|dj| —nz, <-ald]]

2)Ttis clear that d* =d¥ +df . If jeL\E, = L\l then f"Jk =0,

If jel., then

£ = £, 4 d) = fix")+ g, (x*)7dy + Ofd5 |y = Oflas | »
Since Q. Q. T€(2.,3), so from (18), we know

Hdll{ H = O(Hdlu( ‘ )’ thereby,

@]~ a]

In order to obtamn superlinear convergence, we must
make further assumption.

H 5: Let {B,} satisfy

(B, — V2Lt s | = o|d [ =
[P.(B, - VELG k| = ok )

where

P=E, - Ak(AZAk)ilAE=Ak = (gj (Xk)aj S
VL Lx5, ) = Hix¥ e ) + > 0H, (x5),
jel

VLLE W) =Hx" )+ > wH,(x)

jel

Tmitating the proof of Theorem 4.2 in Jian ef al. (2005),
we can obtain the following result.

For k large enough, step 5 and step 6 are no
longer performed in the algorithm and A, = 1, X' = 5"+ &
in step 4.

Moreover, in view of lemma 7 and the way of
Theorem 5.2 in Facchinei and Lueidi (1995), we may obtain
the following theorem.
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Under all above-mentioned assumptions, the
algorithm is  superlinearly convergent, i.e., the
sequence (X'} generated by the algorithm satisfies
ka” -x|= o(ka - X*H).
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