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Abstract: In this research, water body characterization is performed by decomposing the water bodies into
comvex components using morphological decomposition. Opening by reconstruction 18 implemented on the

decomposed convex components using square kernels of mncreasing sizes. A power law relationship 1s
observed between the number of decomposed convex components removed at each iteration of opening by

reconstruction and the kernel size. The scaling exponent of this power law is the fractal dimension of the water
bodies, which indicates the measure of complexity of the self-similarity of the water bodies. The iterative
opening by reconstruction process 1s implemented on the individual water bodies to compute their fractal
dimensions. The computed fractal dimensions are shape dependant and consider the topological regions of

water bodies rather than their geometric boundaries.
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INTRODUCTION

Comvexity 1s considered as one of the basic
descriptors of shapes. Convexity in image processing has
been studied for quite some time (Valentine, 1964; Stermn,
1989; Boxer, 1993; Held and Abe, 1994; Popov, 1996;
Zunic and Rosin, 2004; Rosin and Mumford, 2004,
Rahtu et al., 2004, 2006; Kolesnikov and Franti, 2005,
Varofanec, 2007) and has applications,
mcluding shape decomposition (Latecki and Lakémper,
1999; Rosi, 2000), camouflage breaking (Tankus and
Yeshurun, 2000), object indexing (Latecki and Lakamper,
2000), measurement of border irregularities measurement
i medical image analysis (Lee et al., 2003), handwritten
word recogmtion (Kapp ef al., 2007) and estimation of
derivatives of holomorphic functions (Li, 2007).

An object P is said to be convex if it has the
following property: If points A and B belong to P, then all
points from the line segment [AB] belong to P as well. The
smallest convex set which includes P is called the convex
hull of P and is denoted as CH(P). The convexity measure
C(P) 1s defined to be:

numerous

C(P) = Area (P)/Area (CH(P)) )

In previous research efforts (Dmesh and
Pathmanabhan, 2007a, b; Dinesh, 2007a, b), the
characterization of the convexity of water bodies was
performed by first computing the convex hulls of the
corresponding  water bodies. In  Dinesh and

Pathmanabhan (2007a and b), a fractal power law
relationship is observed between the convexity measures
and areas of water bodies. Convex hull computation
increases the sizes of water bodies. This enlargement is
not even, smaller water bodies undergo
enlargements compared to larger water bodies and hence,
convex hull computation alters the water body size
distribution. The computed convex hulls have a more
even shapiness index distribution compared to the water
bodies, as the water bodies are random chaotic objects
while convex hulls are well defined polygons. Convex hull
computation also causes a loss of homotopic information.
In Dinesh (2007a,b), a fractal power law relationship 1s
observed between the average convexity measures of the
simulated droughts/floods of water bodies and the level
of droughting/flooding. The scaling exponent of this
power law, which was named as a fractal dimension,
indicates the rate of change of the convexity of water
bodies over varying levels of droughting/flooding.

In this research, water body characterization is
performed by decomposing water bodies into convex
components using the morphological decomposition
(Pitas and Venetsanopoulos, 1990). These decomposed
convex components are employed to compute the fractal
dimensions of the water bodies.

smaller

MATHEMATICAL MORPHOLOGY

Mathematical morphology is a branch of image
processing that deals with the extraction of mmage
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components that are useful for representational and
descriptional purposes. The fundamental morphological
operators are discussed in Matheron (1975), Serra (1982)
and Soille {2003). Morphological operators generally
require two inputs; the input image A, which can be in
binary or grayscale form and the kernel B, which is used
to determine the precise effect of the operator.

Dilation sets the pixel values within the kernel to the
maximum value of the pixel neighbourhood. The dilation
operation is expressed as:

Aa@ B = {atb: acA, beB} (2)

Erosion sets the pixels values within the kernel to the
minimum value of the kernel. Erosion is the dual operator
of dilation:

AcB =(AB)" (3)

where A° denotes the complement of A and B is
symmetric with respect to reflection about the origin.

An opening (Eq. 4) is defined as an erosion followed
by a dilation using the same kernel for both operation.
Binary opening preserves foreground regions that have
a similar shape to this kernel, or that can completely
contain the kernel, while eliminating all other regions of
foreground pixels.

A°B=(AcB)®B @)

Morphological reconstruction allows for the isolation
of certain features within an image based on the
manipulation of a mask image X and a marker image Y. It
is founded on the concept of geodesic transformations,
where dilations or erosion of a marker image are performed
until stability is achieved (represented by a mask image)
{Vincent, 1993).

The geodesic dilation, &° used in the reconstruction
process is performed through iteration of elementary
geodesic dilations, 8, until stability is achieved.

8(Y) = 84,(Y) 0 8y (V) 0 8, (Y)...until stability (5)

The elementary dilation process is performed using
a standard dilation of size one followed by an intersection.

s (¥)=Y @Bl 1x (6)

The operation in equation 6 is used for elementary
dilation in binary reconstruction. {Vincent, 1993 ).

Morphological reconstruction is a useful filtering
tool. Figure la shows an image with circles of various
sizes. In order to filter the smaller sized circles, first
opening is performed using a square kemel of size 30. The
circles that are unable to completely contain the kemel are
removed, while the shape of remaining circles iz altered
(Fig. 1b). Morphological reconstruction is implemented
with Fig. 1a being the mask and Fig. 1b being the marker.
This restores the original shape of the remaining circles

(Fig. 1c). This process is known as opening by
reconstruction.

Morphological decomposition {Pitas and
Venetsanopoulos, 1990) is a shape representation

algorithm that decomposes 2D binary objects into convex
components. Each convex component is a subset of the
given object and the union of all such components
returns the original object. The morphological
decomposition of an object into a union of convex
components is performed in the following way. The set of
maximal inscribable convex components in the object A,
that have maximum radius, is found. This set is obtained
in the following way. The first set of decomposition is
subtracted from the object. The set of maximal inscribable
disks in the remaining radius, is found. This set is the

Fig. 1: The application of morphological reconstruction in filtering. (a) The original image. (b) The opened image and (c)

The reconstructed image
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second cluster of the decomposition. The first and second
sets of the maximal inscribable disks are subtracted from
the object and the procedure is repeated until the
remainder of the object is an empty set. The whole
procedure can be described using the following recursive
process:

Step 1: A=[A-A' DOB, ;1 B, (7)
Step 2: 8 = JocicA, (8)
Step 3: Ao=¢ (9)

where n; denotes the number of iterations of erosion and

dilation required for the object A-A';; to become an empty
set.

CHARACTERIZATION OF DECOMPOSED
CONVEX COMPONENTS OF WATER BODIES

Figure 2 shows a number of water bodies of varying
shape and sizes situated in the flood plain region of
Gothavary River, India. The water bodies were traced from
IRS 1D remotely sensed data. Due to the impracticalities
of dealing with incomplete water bodies. only the
complete water bodies are considered (Fig. 3). A total of
67 distinet individual water bodies (Fig. 4) are identified
using the connected component labeling algorithm
proposed in Pitas (1993).

Morphological decomposition is implemented on the
water bodies using a size 3 disk kemel. The rate of decay
of the water bodies into convex components of
decreasing size (Fig. 5) depends on the area and geometric
organization of the water bodies. The decomposed convex
components of the water bodies are shown in Fig. 6. The
union of the decomposed convex components is shown
in Fig. 7. where each category of convex components is
assigned with different grey levels.

The decomposition of the water bodies into convex
components allows for the possibility to represent water
bodies of varying shapes and sizes as unions of simple
objects. It is observed that more number of smaller size
category convex components exists in the water bodies
compared to larger convex components. In order to
characterize the size distribution of the decomposed
convex components, opening by reconstruction 1s
implemented iteratively on the convex components using
square kernels of increasing sizes. In each iteration,
opening removes convex components that are unable to
completely cover the kemel, while modifying the shape of
the remaining convex components. The reconstruction
step retums the original shape of the remaining convex
cumpmwnls.

Fig. 2: Water bodies traced from IRS 1D remotely sensed
data

Fig. 3: The water bodies after removal of incomplete water
bodies

Fig. 4: Identification of the individual water bodies using
connected component labeling. The water body
count number is determined by the grey level; the
brighter the grey level, the larger the water body
number
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Fig. 5: The evolution of decay of the water bodies into convex components of deceasing size

1577



J. Applied Sci., 7 (12): 1574-1581, 2007

(@) ()

(©) @

Fig. 6: The decomposed convex components of the water bodies
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Fig. 7: The union of the decomposed convex components
of the water bodies
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log N = -1.887* log r + 7.140
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Fig. 8: Log-log plot of the number of decomposed convex
components removed in each iteration of opening
by reconstruction N against the kernel size r

A log-log plot of the number of convex components
removed in each iteration of opening by reconstruction N
against the kernel size r is drawn (Fig. 8). A power law
relationship is observed between the two parameters:

log N = -1.887*log r + 7.140 (10)
N = 7.140%¢ 5 (11)

where 7.140 is a constant of proportionality ¢ and 1.887 is
the fractal dimension of the water bodies D, which
indicates the measure of complexity of the self-similarity
of the water body. This power law relationship is
consistent with the decomposition power law
relationships derived in Manna and Hermann (1991),
Dodds and Weitz (2001 and 2003), Teo et al. (2004),

Table 1. The computed fractal dimensions of the individual water bodies

Water body count number Fractal dimension
1 1.127
2 1.507
3 0.836
4 1.621
5 1.338
6 1.241
7 1.064
8 1.294
9 1.189
10 0.928
11 1.245
12 1.103
13 0.981
14 1.427
15 0.856
16 1.121
17 0.616
18 0.996
19 1.945
20 0.563
21 0.872
22 1.071
23 0492
24 1.057
25 0.500
26 1.264
27 1.262
28 0.944
29 0.413
30 0.969
31 0.671
32 0.949
33 1.009
34 0.275
35 0.356
36 0.538
37 0.822
38 1.616
39 0.638
40 0.500
41 0.789
42 0.563
43 0.511
44 0.631
45 1.248
46 1.319
47 0.944
48 1.166
49 1.248
50 0.304
51 0.723
52 0.621
53 0.578
54 0.491
55 1.266
56 1.534
57 1.137
58 0.503
59 1.744
60 1.915
61 0.563
62 1.421
63 1077
64 0.481
65 1.234
66 0.641
67 0.801
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Radhakrishnan et al. (2004), Sagar and Chockalingam
(2004) and Chockalingam and Sagar (2005).

The iterative opeming by reconstruction process 1s
implemented on the individual water bodies. The fractal
dimension of each individual water body is the slope of
the log-log plot of N against r for the corresponding water
body. The computed fractal dimensions for the individual
water bodies are shown in Table 1.

This approach to fractal dimension computation takes
orly mto account the internal regions of the water bodies,
while discarding the non-water body regions. As the
number and size distribution of the decomposed convex
components depend on the shape of the water bodies, the
computed water body fractal dimensions are shape
dependant.

CONCLUSIONS

In this research, the characterization of the
decomposed convex components of water bodies was
performed. Morphological decomposition was used to
decompose water bodies mto convex components.
Opening by reconstruction was mmplemented on the
decomposed convex compoenents using square kernels of
mcreasing sizes. A power law relationship was observed
between the nmumber of decomposed convex components
removed m each iteration of opeming by reconstruction
and the kernel size. The scaling exponent of this power
law 1s the fractal dimension of the water bodies, which
indicates the measure of complexity of the self-similarity
of the water bodies. The iterative opening by
reconstruction process was implemented on the individual
water bodies to compute their fractal dimensions. The
computed fractal dimensions are shape dependant and
consider the topological regions of water bodies rather
than their geometric boundaries.
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