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Abstract: In this study, a new dynamic data allocation algerithm for non-replicated Distributed Database
Systems (DDS), namely the threshold algorithm, is formulated and proposed. The threshold algorithm
reallocates data with respect to changing data access patterns. The proposed algorithm is distributed in the
sense that each node autonomously decides whether to transfer the ownership of a fragment in DDS to another
node or not. The transfer decision depends on the past accesses of the fragment. Each fragment continuously
migrates from the node where it is not accessed locally more than a certain number of past accesses, namely
a threshold value. The threshold algorithm is modeled for a fragment of the database as a finite Markov chain
with constant node access probabilities. In the model, a special case, where all nodes have equal access
probabilities except one with a different access probability, 1s analyzed. It has been shown that for positive
threshold values the fragment will tend to remain at the node with the higher access probability. Tt is also shown
that the greater the threshold values are, the greater the tendency of the fragment to remain at the node with
higher access probability will be. The threshold algorithm is especially suitable for a DDS where data access

pattern changes dynamically.
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INTRODUCTION
Developments in database and networking
technologies mn the past few decades led to advances in
distributed database systems. A DDS is a collection of
sites connected by a communication network, in which
each site is a database system in its own right, but the
sites have agreed to work together, so that a user at any
site can access data anywhere in the network exactly as if
the data were all stored at the user's own site
(Date, 1990, Ozsu and Valduriez, 1991).

The primary concern of a DDS 1s to design the
fragmentation and allocation of the underlying database.
Fragmentation unit can be a file where allocation issue
becomes the file allocation problem. File allocation
problem 1s studied extensively in the literature, started by
Chu (1969) and continued for non-replicated and
replicated models (Apers, 1988; Casey, 1972; Grapa and
Belford, 1977, Mahmoud and Riordan 1976, Morgan and
Levin, 1977; Ramamoorthy and Wah, 1983, Whitney,
1970). Some studies considered dynamic file allocation
(Ames, 1977, Smith, 1981; Wah, 1979; Wang and Chen,
2005; Ahn and Kim, 2003).

Data allocation problem was introduced when
Eswaran (1974) first proposed the data fragmentation.

Studies on vertical fragmentation (Babad, 1977;
Cer1 et al., 1989; Hoffer, 1976, Navathe ef al., 1984),
horizontal fragmentation (Ceri et al, 1983) and mixed
fragmentation (Chang and Cheng, 1980; Cheng et af.,
2002; March, 1983; Sacca and Wieder hold, 1985; Sacco,
1986; Zhang and Orlowska, 1994) were conducted. The
allocation of the fragments 1s also studied extensively
(Ahmad et al., 2002; Apers, 1988, Baklcer, 2000; Chang,
2002; Kwok et al., 1996, So et al., 1999, Zhou et ai., 1999,
Gorawski et al., 2005).

In these studies, data allocation has been proposed
prior to the design of a database depending on some
static data access patterns and/or static query patterns. In
a static environment where the access probabilities of
nodes to the fragments never change, a static allocation
of fragments provides the best solution. However, in a
dynamic enviromment where these probabilities change
over time, the static allocation solution would degrade the
database performance. lmtial studies on dynamic data
allocation give a frameworl for data redistribution (Wilson
and Navathe, 1986) and demonstrate how to perform the
redistribution process in minimum possible time
(Rivera-Vega ef al., 1990). In (Brunstrom et al., 1995), a
dynamic data allocation algorithm for non-replicated
database systems 1s proposed, but no modeling 1s done
to analyze the algorithm. Instead, the paper focused on
load balancing issue.
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This study proposes a new dynamic data allocation
algorithm for non-replicated distributed databases and
analyzes the algorithm using a finite-state Markov chain.
Present study 1s based on the research conducted by
Ulus, (1999). In thus study, horizontal, vertical or mixed
fragmentation can be used. Allocation unit can even be as
small as a record or an attribute.

THE THRESHOLD ALGORITHM

In some cases, due to extra storage space need, it
could be very costly to use the optimal algorithm (Ulus,
1999) in its original form. For a less costly algorithm, the
solution 1s to decrease the need for extra storage space.
The proposed threshold algorithm in this paper serves
this purpose.

Let the number of nodes be n and let X, denote the
access probability of a node to a particular fragment.
Suppose the fragment is stored in this particular node (i.e.,
it is the owner node). For the sake of simplicity, let X,
denote the access probability of all the other nodes to this
particular fragment. The owner does local access, whereas
the remaining nodes do remote access to the fragment.

The probability that the owner node does not access
the fragment is (n-1) X, The probability that the owner
node does not perform two successive accesses is
((n-1) X,Y. Similarly, the probability that the owner node
does not perform m successive accesses 13 ((n-1) X,
Therefore, the probability that the owner node
performs at least one access of m successive accesses
s 1-((n-1) X)™

Table 1 shows the probabilities that the owner node
performs at least one access out of m successive
accesses, where x, ranges from 0.1 through 0.9 and where
m 1s 5, 10, 25, 50 and 100. The values 1n the table are
truncated to five decimal digits.

According to the table, the probability that the owner
node with the access probability of 0.1 performs at least
one access of ten successive accesses is 0.65132. Tt is
trivial from the table that as the access probability of
owner node increases, so as the probability that at least
one local access occurs in m accesses.

Applying the same idea, a new threshold based
algorithm (or threshold algorithm) can be proposed. In
threshold algorithm, only one counter per fragment is
stored. Figure 1 shows fragment I together with its
counter. Comparing it to the optimal algorithm, this
radically decreases the extra amount of storage space to
just one value compared to an array of values in the
optimal algorithm.

In the threshold algorithm, the initial value of the
counter 15 zero. The counter value i1s mereased by one for
each remote access to the fragment. It 1s reset to zero for
a local access. In other words, the counter always shows
the number of successive remote accesses. Whenever the
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Table 1: The probability that at least one local access occurs in m accesses

5§ m=S5 m=10 m= 25 m= 50 m=100
0.1 0.40051 0.65132 0.92821 0.99485 0.999%7
0.2 0.67232 0.89263 0.99622 0.99999 1.00000
0.3 0.83193 0.97175 0.99987 1.00000 1.00000
04 0.92224 0.99395 1.00000 1.00000 1.00000
0.5 0.96875 0.99902 1.00000 1.00000 1.00000
0.6 0.98976 0.99990 1.00000 1.00000 1.00000
0.7 0.99757 0.9999% 1.00000 1.00000 1.00000
0.8 0.99968 1.00000 1.00000 1.00000 1.00000
0.9 0.99999 1.00000 1.00000 1.00000 1.00000
Eragment, | s |

Fig. 1: Any fragment i in threshold algorithm

1. For each (locally) stored fragment, initialize the counter vahes to
zero. (Set s, = 0 for every stored fragment 1).

2. Process an access request for the stored fragment.

3. If it is a local access, reset the counter of the corresponding
fragment to & (if node j accesses fragment i, set 5= §). Go te step 2.

4. If it is & remote access, increase the counter of the corresponding
fragment by one. (If fragment i is accessed remotely, setg, =5+ 1)

5. If the counter of the fragment is greater than the threshold value,
reset its counter to zero and transfer the fragment to the remote
node. (If s, t, set 8,=0 and the fragment to remote node)

6. Goto step 2.

Fig. 2: Threshold algorithm

counter exceeds a predetermined threshold wvalue,
the ownership of the fragment is transferred to
another node.

At this pont, the critical question 1s which node wall
be the fragment's new owner. The algorithm gives very
little mformation about the past accesses to the fragment.
In fact, throughout the entire access history only the last
node that accessed the fragment is known. So, there are
two strategies to select the new owner. Either it is chosen
randomly, or the last accessing node 18 chosen. In the
former, the randomly chosen node could be cone that has
never accessed the fragment before. So picking the latter
strategy is heuristically more reasonable.

Initially, all fragments are distributed to the nodes
according to any method A threshold value t is chosen.
Afterwards, any node j, runs the threshold algorithm
given in Fig. 2 for every fragment 1, that it stores.

Threshold algorithm overcomes the volley of a
fragment between two nodes provided that a threshold
value greater than one 1s chosen. The algorithm
guarantees the stay of the fragment for at least (t+1)
accesses in the new node after a migration. ITn other
words, it delays the migration of the fragment from any
node for at least (t+1) accesses.
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An important point in the algorithm is the choice of
threshold value. This value will directly affect the mobility
of the fragments. It 1s trivial that as the threshold value
mcreases, the fragment will tend to stay more at a node;
and as the threshold value decreases, the fragment will
tend to visit more nodes.

Another pomt in the algorithm 15 the distribution
of the access probabilities. If the access probabilities
of all nodes for a particular fragment are equal, the
fragment will visit all the nodes. The same applies for two
nodes when there are two highest equal access
probabilities.

MARKOV CHAIN MODEL OF THRESHOLD
ALGORITHM

General Case: Let there be n nodes (nc Z"), denoted
by O through (n -1). Let the threshold wvalue be t
(t € Z v {0}). For simplcity, suppose the access
probabilities of the nodes are discrete random variables.
Assume the nodes have access probabilities X through
X, for a particular fragment, subscripts showing the node
mdex. The following 1s satisfied for the access
probabilities where X, € [0, 1] for all1 = 0,..,n-1.

n-1

inzl

1=0

Figure 3 shows the fimte state diagram of the system
described.

In the diagram, two numbers determine the name of
each state; first number denotes the node name where the
fragment 1s currently stored, and the second number
denotes For
example, when the system is in state 00, this means that

the successive remote access counter.

the fragment 1s currently stored m node 0, and the current
successive remote access counter 1s 0 (which implies that
either last access performed on the fragment is local or the
fragment has just migrated to node 0).

There are (t+1) states per node. In all these states, the
fragment 1s stored in that particular node. These states
correspond to the different values of successive remote
access counter for the node.

The state transition probabilities are given next to
each transition mdicated by the arrows. For example, for
the state 00 there are several incoming and outgoing
transitions. One transition is both incoming and outgoing
with a probability of x, This transition unplies that with
a probability of x,, node 0 accesses the fragment, and the
counter, that is already zero, is reset to zero and the
fragment stays at node 0. As a result, the system does
not change a state. Besides this transition, there 1s only
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Fig. 3: Finite-state diagram of the system in general case

one outgoing transition to state 01 with a probability
of (1-x,). This transition implies that with a probability of
(1-x,) a remote node accesses the fragment, and the
counter is increased by one, to one. As a result, the
fragment still stays at node 0, but a state change from 00
to 01 takes place. Besides these two transitions, there are
two groups of incoming transitions all with a probability
of x;,. One group of transitions comes from the states 01
through Ot. A local access causes these transitions. As a
result of these transitions, the counter 1s reset to zero and
the fragment still stays i node 0, but it leads to a state
change from the previous state (01 through Ot) to 00. The
other group of transitions comes from the states Ot
through (n-1)t. Before these transitions, the fragment 1s in
a node other than node 0 and the counter s t. The
transition occurs when node 0 accesses the fragment. As
a result, the counter value exceeds the predetermined
threshold value and the fragment 1s transferred to the
ownership of node 0. Hence a state change from the
previous state (Ot through (n-1)t) to 00 occurs.

Figure 3 shows a Markov chain due to its memory
less property. It 1s memory less because, for any state the
system can enter, the next state entered depends solely
on the current state of the system. Furthermore, this
Markov chain has discrete-time, finite-state, irreducible,
aperiodic and recurrent properties. It 1s discrete-time,
because the state transitions occur in discrete times
(when an access to the fragment is performed) and state
transition duration is negligible. Tt is finite-state, because
the number of states 1s finite. It 1s ureducible, because
every state can be reached from every other state. This
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Markov chain is aperiodic, because for every state, the
entrance to the same state is not periodic. This Markov
chain 1s recurrent, because it 1s finite-state and ureducible
(Klemrock, 1975).

Let  be a 1 by n probability vector whose elements
Ty, show the steady state probability that the system is in
state k.

My :|1m

Let P be the n by n state transition probability matrix
whose elements p;, show the state transition probability
from state 1 to state j.

Puw Pao e pﬂ[n—lj
P Pu Pu e Piwyy
- p‘] -
p(n—l)D p(n—ljl """"" p[n—lj[n 3 o

Equation 1 defines the steady state of a discrete-time,
finite-state, irreducible, aperiodic and recurrent Markov
chain. Given the state transition probability matrix P, the
system determimnes the steady-state probability vector 7
(Klemrock, 1975).

n=xnP (1)
Readjusting Eq. 1 and 2 15 obtained.
P-1y =0 (2

are n equations and n unknowns. But since one of the
equations 1s linearly dependent on the others, one more

(x, 1-x, 0 0o 0 0 0
x, 0 1-x 0 0 0 0

x, 0 0 l-x, 0 0 0

X, 0 0 0 x 0 0

0 0 0 0 x, l-x 0

0 0 0 X, 0 1-x
U
E10 0 0 X, 0
x, 0 0 X 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

LX, 0 0 0 x 0 0
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equation is needed to solve the system (Kleinrocl, 1975).
Last equation 1s, the one that shows the summation of the
steady state probabilities, given by Eq. 3.

“Zl: m=1 (3)
Replacing the first equation in Eq. 2 by Eq. 3 and 4 is
obtained.

Qn'=r (4

InEq. 4, Q, ' and r are as follows.

1 1 1
q=| P BTl Pe
Powss P Pevesn ~ 1]
ﬂ 0
n'= r=
0

o1 oy nel

These equations can be adapted to system in Fig. 3. For
the threshold algorithm model in general case of Fig. 3, let
T, be the 1 by n probability vector and P, be the n by n
state transition probability matrix. They are as follows.

T = [Tog Mo . T Tag Toug oo e o Tnp T - Togurnl
0 0 0 0 0 ]
0 0 0 0 0
0 0 0 0 0
0 x, 0 0 0
0 0 0 0 0
0 0 0 0 0

1-x, 00 0 0
0 X, 0 0 0
0 l-x, 0 0
0 0 1-x, 0
0 L0 0 1-x
0 L0 0 0
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Notice that 1, elements have two indices. First index is the node name and the second index is the successive remote

access counter. And finally, Q_is as follows.

1 1 1 1 1 1
I-x, -1 0 0 0 0
0 1-x -1 0 0 0 0 0
0 0 0 I-x, -1 0 0
0 0 0 0 X, x-1 x X
0 0 0 0 0 1-x, -1 0
Q 0 0 0 0 0 0 1-x -1
0 0 0 0 0 0 0 0
0 0 0 X, 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0

After solving for m, vector in Eq. 4, the probabilities, that
the fragment 13 i a particular node, are calculated as
follows for all 1 = 0,., (n-1) where O, denotes the
probability that the fragment 1s in node 1 (here notice that
the node names are used as subscripts m calculation).

0.=>m, (5

=3

Since the number of unknowns, namely the equilibrium
probabilities in the general case is very large, it is very
hard to investigate the general case situation. For the sake
of simplicity, a special case, that will decrease the number
of unknowns to just two, will be examined.

Special case: Assume an n node DDS. Assume further
that one particular node denoted by s has an access
probability of x, to a particular fragment of DDS. Suppose
all the other nodes denoted by d, through d., have
the equal access probabilities of %, to the same
fragment. The following equation is satisfied for the
access probabilities where x€[0,1] and =x.[0,1]
Xx+n-Dx, =1

The fimte-state diagram of this system 1s given
m Fig. 6.

In the Fig. 4, states s0 through st comresponds to
node s that has an access probability of x, to the fragment.
For the rest of the nodes d, through d,,, there are the
states di0 through dit, (n-1) of each.
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1 1 1
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
X, X 0 0 0 0 x
0 0 0 0 0 0 0
0 0 0 0 0 0 0
I-x, -1 0 0 0 0 0
0 Kt K ™ 1 Kt X Kot Kot
0 0 o 1-x -1 0 0 0
o 0 .. 0 1-x, -1 0o 0
0 0 0 0 0 1-x_, -1 |
X
o %,
s0 ~ (1 I IR st
1x, N_/ 1-x,
..... X
X
X
X 1-%,
4,0 = \d1) T
WE3
% Xa
Xy
TR,
X 1x, 1%,
d.0 = &:I/I im——— dblt
Xy

Fig. 4: Finite-state diagram of the system in special case
Lemma 1: For the system of Fig. 4, the steady state

probabilities of all nodes, except node s, corresponding to
a particular threshold value t, 13 equal. In other words,

n af ndhf

where h shows any node mndex varying from 1 to (n-1) and
f shows any threshold value varying from 0 to t.

Proof: (Ulus.,1999).



The finite-state diagram of the system after Lemma 1

is given in Fig. 5.

In Fig. 5, states sO through st corresponds to node s
that has an access probability of x, to the fragment. For
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For the threshold algorithm model of Fig. 7, let 7, be

a 1 by n(t+1) steady state probability vector and let P, be

They are as follows.

the rest of the nodes d; through d, ., there are the states
d0 through dt as a corollary to Lemma 1.

Moo

[ -]

< i

=BT = I

[T e R

0 0
0 0 0
0 0 0
X, 0 X,
X, 1-x, 0 0
X, 0 1-x, 0 0
. 1-x, 0
4 0 Xd
0 a
O 4
X

< O

(=B el oI = o T -

[T e R

the n(t+1) by n{t+1) state transition probability matrix.

o o o ol a o

o o

It can be easily seen that in 7, vector the elements 7, through 7, repeat themselves (n-1) times. The dimension of the
system can be decreased as shown in Lemma 2.

Lemma 2: Let 7, be a 1 by 2(t+1) steady state probability vector and let P, be the 2(t+1) by 2(t+1) state transition

probability matrix as shown below.

oo

o o X

[ R e

- B e Y - T - I o T

<ol

(RN e B o N o B o B

[T e B

[ B o BN o B -

[T e B

n, (n-Dn, (n-1m, |
0
0 0 0
0 0
1-x, 0
0 1-x 0
0 L o1-x, 0
0 0 1-x,
0 a
0 4
0 1-x

The system of equations given by m=mn_,P,and m=nP, are the same
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Fig. 5. Simplified finite-state diagram of the system i
special case

Proof: (Ulus, 1999)

Theorem 1: Assume that the fragments of a DDS are
allocated to n nodes, denoted by 0 through (n-1). Assume
all nodes have equal access probability of x, to a
particular fragment except node 0, which has a different
access probability of x;, where x,€ [0, 1] and x € [0, 1].
When the threshold algorithm with a threshold t is used,
the fragment will be in node 0 with the probability O,
given by

x (1- xd)‘[lf (lfxs)“‘]

= (6)
Tox(1-x)+ (lfxs)‘”[lf(lf xd)‘]

where x,#0, x,#0 and x,#1.
Proof: (Ulus, 1999)

Theorem 2: Assume that the fragments of a DDS are
allocated to n nodes, denoted by 0 through (n-1). Assume
all nodes have equal access probability of x, to a
particular fragment except node 0, which has a different
access probability of x; where x,€ [0, 1] and x,€ [0, 1].
When the threshold algorithm with a threshold t is used,
the fragment will be m the nodes other than node 0 with
the probability O, given by

(1-x )" [1-(1-x,)"]

- ™)
x,(1-x) +(1—x5)‘”[1—(1—xd)‘]

where x.#0, x,20 and x.=1.
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Proof: (Ulus, 1999)

Equation 6 gives the probability that the fragment is
in node 0, whereas Eq. 7 gives the probability that the
fragment is in the other nodes. Since the fragment is either
in node 0 or in a node other than node 0, the sum of O,
and Oyis 1.

RESULTS

Let us investigate Eq. 6 and 7. Smnce, O +0,~1,
inwvestigating only O, 1s sufficient.

InEq. 6, the parameters are x,, x4 and t. In other words,
the probability that the fragment is in node O 1s determined
by the access probability of node 0, the access probability
of the other nodes and the threshold value. Furthermore,
the number of nodes, n, is another parameter, since it
specifies the relationship between x, and x;, with the
following formula.

x,+(m-1)x; =1

Now, let us find how a change in the access
probabilities and the threshold value effect the probability
that the fragment 1s mn any node.

Change in Access Probability: The relation between x,
and x, is given by the following equation.

X+ n-1)x,=1

Since x, and x; are access probabilities, the following
inequalities are satisfied.

Ozx.<1 and Ozx,<1

When n 1s held constant, x, and x; are mversely
proportional. So, it is sufficient to investigate only the
change inx, of O,.

Lemma3: WhenX,=1,0,=1.

Proof: When x, = 1, all &, values of O, given by Eq. 5 are

0 except T, value. T value 1s 1 which makes O, value 1 as
well.

Lemma 4: Whenx, =0, O, =0.

Proof: When x, = 0, all m, values of O, given by Eq. 5 are
0 which makes O, value 0 as well.

Lemma 5: O, 1s strictly mereasing with respect to x, in the
interval of (0,1).
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Proof: Let us investigate the change in O, with respect to
x,. The partial derivative of O, with respect to x, gives the
change 1in O, with respect to x,. The partial derivative 1s as
shown below where O, and O, are the nominator and the
denominator of O, respectively.

00, (t+1X1-x) [ x,(1- %0, +[1-(1-x,5]0, |
o, [o.]

It 1s obvious that the partial derivative 1s positive for
all x,€[01]. Therefore, O, 1s strictly increasing with
respect to x, in (0,1).

Figure 6 shows the behaviour of O, as a function of
x, m a five-node system. Figure 6 1s drawn for three
different threshold values, 0, 3 and 10.

For the threshold of 0, O, is a linear function of x, with
a slope of 1. This means that when the threshold is 0, the
access probability of a node diectly gives the
steady-state probability that the fragment 1s in the
corresponding node.

For threshold values of 3 and 10, notice the
change n steepness of the curve.

Change in threshold value: Threshold t can take only
non-negative integer values. Let us investigate under
which circumstances O, 1s increasing or decreasing with
respecttot.

Lemma 6: The following holds for the change in O, with
respect to t, provided that x,#0, x,#0 and x,#1:

¢ Whenx, =x, O, is constant with respect to t.
When x>x,, O, 1s increasing with respect to t.
When x,<x,, O, 1s decreasing with respect to t.

Proof: To investigate the behaviour of O, with respect to
the threshold, the partial derivative of O, with respect to
t should be examined But since O, is defined only for
non-negative integer values of t, it 1s not continuous for
t. Therefore it is not possible to find the partial derivative
of O, with respect to t. Instead, to investigate the sign of
the difference O,(r + 1) - O,(1), for any positive mteger t,
would be sufficient. If the sign of this expression 1s
positive, the probability will be increasing. Otherwise it
will be decreasing.

For simplicity, let us substitute a and b given by the
equations a = 1-x, and b = 1-x, m Eq. 6. The difference will
be as follows.

(- bR [b-ata(-b)-b(1-a)

Qr+D-Q)= (a"(1-t)+E(1-B)(a”(1-b")+b"(1-b))
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1.0

0.84

Os

04+

0.2

Fig. 6: 0, as a function of x ;n a five-node system for
thresholds 0, 3 and 10.

In this expression, all the terms except (b-ata™
{1-b)-b™* (1-a) in the nominator are positive provided
that x,#0, x#0 and x,#1. Ounly the sign of this term
determines the sign of the whole expression. Let D denote
thus term and let us substitute a and b expressions back
in. The result is as follows.

D=x [I-{-x)y"]-x[1-1-x)"]

Letus multiply and divide D by xx, and readjust it. The
expression takes the following form.

oo sz{[l(lxd)”’] [1-0-x7"]

X

a

XS
Applying Eq. C.2, D is found as follows.
D= X’XdZ[(lf x) - 0-x)]

The sign of D depends on the relation between x, and
Xy According to this:

If x, = x,, D 1s zero. Therefore, when x,=x, O, 1s
constant with respect to t.

If x;»x,, D 1s positive. Therefore, when x> x, O,1s
increasing with respect tot.

If x,<x; D is negative. Therefore when x.<x, O, is
decreasing with respect to t.

Lemma 7: LimitQ, =1

1se

provided that x,#0.

Proof: Readjusting FEq.6, the following formula is
obtained:
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10+ [— o
o= -'_-____..---'

0.8
........... 0.28
— (024
—-—=.0.16

osd /5 e 0.12
— 02

0,
04
0.2
.:"-. -
0.0 ————oe p—=o=o ' r
0 30 80 90

Fig. 7. O, as a function of t in a five-node system for x,
values of 0.28, 0.24, 0.16, 0.12 and 0.2

X, [17 (1- xs)“‘]
(=-x " [1-(1-x,)]
X, +
’ -x)

O =

Using this formula, provided that x,# O

X, %1 X4
0x1 x,
oL x,

4

LimitO, =

Figure 7 shows the behavour of O, as a function of t
mn a five-node system. Figure 7 1s drawn for five different
access probabilities x, of 0.28, 0.24, 0.2, 0.16 and 0.12.

For 0.28 and 0.24, O, converges to one. This is
because x.>x,. Noticing the change in steepness of two
curves, it converges faster for greater access probabilities.
For 0.2, O, is constant at 0.2. This is because x, = x,. In this
case, the access probability of a node directly gives the
steady-state probability that the fragment 13 1 the
corresponding node.

For 0.16 and 0.12, O, converges to zero. This is
because x,<x; Noticing the change in steepness of two
curves, it converges faster for smaller access probabilities.

CONCLUSIONS

In this study, a new dynamic data allocation
algorithm, namely threshold algorithm, for non-replicated
DSSs is introduced. In the threshold algorithm, the
fragments, previowsly distributed over a DDS, are
continuously reallocated according to the changing data
access patterns. The node in which a fragment 13 stored
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is considered the owner of that particular fragment. When
its owner in the past few successive accesses, specified
by the threshold value, never accesses a fragment, the
ownership of the fragment is transferred to another nede.

The threshold algorithm is modeled using a finite-
state Markov chain. To simplify the model, a special case
where the access probabilities of the nodes are all equal
except a single node is examined. The equilibrium
probabilities for a fragment in any node are obtained in
terms of access probabilities and the threshold value. The
behavior of a fragment, in reaction to a change in access
probabilities or to a change i threshold value, 1s
investigated. It is shown that the fragment tends to stay
at the node with lugher access probability. As the access
probability of the node increases, the tendency to remain
at this node also increases. It 1s also shown that as the
threshold value increases, the fragment will tend to stay
more at the node with higher access probability.

Threshold algorithm can be used for dynamic data
allocation to enhance the performance of non-replicated
DDSs. For further research, the algorithm can be extended
to use on the replicated DSSs as in (Sistla er al., 1998;
Wolfson et al., 1995, 1997).

REFERENCES

Ahmad, I, K. Karlapalem, Y.K. and S.K. Kwok, 2002. So,
Evolutionary algorithms for allocating data 1n
distributed  database systems. Distributed and
Parallel Databases, 11: 5-32.

Abn, K. and D H. Kim, 2005. Implementation of a database
management system for the comprehensive use of
severe accident risk information. Progress in Nuclear
Energy, 46: 57-76.

Ames, L.E., 1977. Dynamic file allocation in a distributed
database system. PhD. Thesis, Duke Umversity,
Durham .

Apers, PM.G., 1988. Data allocation in distributed
database systems. ACM Transactions on Database
Systems, 13: 263-304.

Babad, M.T., 1977. A record and file partitioning model.
Comm. ACM., 20: 22-31.

Bakker, J.A., 2000. Semantic partitioning as a basis for
parallel 1/0 in database management systems. Parallel
Computing, 26: 1491-1513.

Brunstrom, A. S.T. Leutenegger and R. Simha, 1995.
Experimental evaluation of dynamic data allocation
strategies 1 a distributed database with changing
workloads. In: TEEE Proc. Fourth Int. Conf. Inf
Knowl. Man., Baltimore, MD., pp: 395-402.

Casey, R.G., 1972. Allocation of copies of a file m an
information network. I Proc. AFIPS Spring Jomt
Computer Conf., Atlantic City, pp: 617-625.



J. Applied Sci., 7 (2): 165-174, 2007

Ceri, S., S.B. Navathe and G. Wiederhold, 1983.
Distribution design of logical database schemas.
TEEE Trans. Software Engineering, 9: 487-503.

Cert, 3., B. Pernici and G. Wiederhold, 1989. Optimization
problems and solution methods in the design of data
distribution. Information Systems, 14: 261-272.

Chang, SK. and W.H. Cheng, 1980. A methodology for
structured database decomposition. TEEE Trans.
Software Engineering, 6: 205-218.

Chang, C.T., 2002. Optimization approach for data
allocation m multidisk database. Eur. J. Operational
Res., 143: 210-217.

Cheng, CH., WK. Lee and K.F. Wong, 2002. A genetic
algonthm-based clustering approach for database

partitioning. TEEE Trans. Systems Man and
Cybernetics Part C-Applications and Reviews,
32: 215-230.

Chu, W.W., 1969. Optimal file allocation m a multiple
computer system. IEEE Trans. Computers,
18 885-889.

Date, C.T., 1990. An Introduction to Database Systems
Vol. I, 5th Edn., Addison-Wesley: Reading.

Eswaran, K.P., 1974. Placement of records mn a file and file
allocation n a computer network. In: Proc. IFIP Cong.
on Information Processing, Stockholm, Sweden,
pp: 304-307.

Gorawski, M. and R. Chechelski, 2005. Parallel telemetric
data warehouse balancing algorithm. Proceedngs 5th
Intl. Conf. on Intelligent Syst. Design and Applied,
8:387-392

Grapa, E. and G.G. Belford, 1977. Some theorems to aid in
solving the file allocation problem. Comm. ACM.,
20: 878-882.

Hoffer, I.A., 1976. An Integer programming formulation of
computer database design problems. Information
Science, 11: 29-48.

Kleinrock, L., 1975, Queueing Systems Vol. I. Theory,
Tohn Wiley and Sons: New Yorlk.

Kwole, Y.X., K. Karlapalem and I. M.P. Ng Ahmad, 1996.
Design and evaluation of data allocation algorithms
for distributed multimedia database systems. IEEE .
on Selected Areas n Commumecations, 14: 1332-1348.

Mahmoud, S. and J.8. Riordan, 1976. Optimal allocation of
resources in distributed information networks. ACM
Transaction on Database Systems, 1: 66-78.

March, S8.T., 1983. Techmques for structuring database
records. ACM Computing Surveys, 15: 45-79.

Morgan, HL. and K.D. Levin, 1977. Optimal program and
data locations in computer networks. Comm. ACM.,
20: 315-321.

Navathe, S.B., S. Ceri, G. Wiederhold and J. Dou, 1984.
Vertical partitioning algorithms for database design.
ACM Transaction on Database Systems, 9: 680-710.

Ozsu, T. and P. Valduriez, 1991 . Principles of Distributed
Database Systems, Prentice-Hall: Englewood Cliff.

174

Ramamoorthy, C.V. and B.W. Wah, 1983. The
isomorphism of simple file allocation. TEEE Trans.
Computers, 23: 221-231.

Rivera-Vega, P.I. R. Varadarajan and S.B. Navathe, 1990.
Scheduling data redistribution in distributed
databases. In: IEEE Proc. 6th Intl. Conf. Data Eng.,
pp: 166-173.

Sacca, D. and G. Wiederhold, 1985. Database partitioning
in a cluster of processors. ACM Transaction on
Database Systems, 10: 28-56.

Sacco, G., 1986. Fragmentation: A technique for efficient
query processing. ACM Transaction on Database
Systems, 11: 113-133.

Sistla, A.P., O. Wolfson and Y. Huang, 1998. Mimmization
of communication cost through caching in mobile
environments. IEEE Trans. Parallel Distributed
Systems, 9: 378-390.

Smith, AJ., 1981. Long-term file mugration: Development
and evaluation of algorithms. Comm. ACM.,
24: 512-532,

So, 8.K., I. Ahmad and K. Karlapalem, 1999. Response
time driven multimedia data objects allocation for
browsmg documents i distributed environments.
IEEE Trans. Knowledge and Data Engineering,
11: 386-405.

Ulus, T., 1999. Data Allocation algorithms in distributed
database systems (In Turkish), Ph.ID. Thesis, Istanbul
University, Istanbul.

Wah, B'W., 1979, Data management in distributed
systems and distributed data bases, Ph.D. Thesis,
University of California, Berkeley.

Wang, S. and HI. Chen, 2005. Near-Optimal Data
Allocation over multiple broadcast channels,
Computer Commumcations, (In Press).

Whitney, V.K.M., 1970. A study of optimal file
assignment and communication  network
configuration in remote access computer message
processing and communication systems, Ph.D.
Thesis, University of Michigan, Ann Arbor.

Wilson, B. and S.B. Navathe, 1986. An analytical
framework for the redesign of distributed databases.
m Proceeding of the 6th Advanced Database
Symposium, Tokyo, Japan, pp: 77-83.

Wolfson, O. and S. Tajodia, 1995. An algorithm for
dynamic data allocation in distributed systems.
Information Processing Letters, 53: 13-119.

Wolfson, O. and S. Jajodia, 1997. An adaptive data
replication algorithm. ACM Transaction on Database
Systems, 22: 255-314.

Zhang, Y. and ML.E. Orlowslka, 1994, On fragmentation
approaches for distributed database design.
Information Science, 1: 117-132.

Zhou, S, HM. Williams and K.F. Wong, 1999. Data
placement in shared-nothing database systems. High
Performance Cluster Computing, 2: 440-453.



	JAS.pdf
	Page 1


