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Abstract: Solution structure and stability of fully developed thermal flows through a curved rectangular duct
of aspect ratio 2 is investigated numerically by using the spectral method over a wide range of the Dean
number 0 < Dn < 1000. A temperature difference 1s applied across the vertical sidewalls for the Grashof number
1000 < Gr < 1500, where the outer wall is heated and the inner wall is cooled. Though the present study covers
a wide range of the Grashof number, in this paper, however, a single case of the Grashof number Gr = 1500 15
investigated in detail. First, steady solutions are obtained by the Newton-Raphson iteration method. Linear
stability of the steady solutions 1s then investigated. It 1s found that among multiple branches of steady
solutions obtained, only one branch, which exists throughout whole range of the Dean number, is linearly
stable in a couple of interval of Dn while the other branches are linearly unstable. Secondary flow patterns, axial
velocity distribution and temperature profile on each of the branches are also obtained.
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INTRODUCTION

The study of flows through a curved duct is of
fundamental mterest because of its ample applications in
fluids engineering, such as in air conditioning systems,
refrigeration, heat exchangers, ventilators and the blade-
to-blade passages in modern gas turbines. Blood flow in
human veins and arteries is another important application
of the curved duct flows. The flow through a curved duct
shows physically mteresting feature under the action of
the centrifugal force caused by the curvature of the duct.
The presence of curvature generates centrifugal forces
which act at right angle to the main flow direction and
produce secondary flows. Dean (1927) was the first who
formulated the problem in mathematical terms under the
fully developed flow condition. He found the secondary
flow consisting of a pair of counter rotating vortices
caused by the centrifugal force. Smce then, there have
been a lot of theoretical and experimental works
concerming this flow. The readers are referred to
Berger et al. (1983), Nandakumar and Maslivah (1986)
and Ito (1987) for some outstanding reviews on
curved duct flows.

One of the mteresting phenomena of the flow through
a curved duct is the bifurcation of the flow because
generally there exist many steady solutions due to
channel curvature. Dennis and Ng (1982), Nandakumar

and Masliyah (1982) and later Yanase et al. (1989) studied
dual solutions of the flow through a curved duct.
Yang and Keller (1986) studied the bifurcation of the flow
for small curvature and found multiple branches of
solutions. Thangam and Hur (1990) studied the
characteristics of laminar secondary flows i a curved
rectangular duct. An early bifurcation structure and linear
stability of the steady solutions for fully developed
flows in a curved square duct was investigated by
Winters (1987). He applied bifurcation analysis to it and
found that there are many symmetric and asymmetric
steady solutions among which linearly stable ones are
few. However, the existence of the multiple solutions of
the flow through a curved duct with the large aspect ratio
was first studied by Yanase and Nishiyama (1988). They
obtamed two kinds of solutions: the two-vortex solution
and the four-vortex solution for the same aspect ratio.
Wang and Yang (2004) performed a numerical study on
fully developed bifurcation structure and stability of the
forced convection m a curved square duct flow. Very
recently, Mondal et al (2006) performed numerical
prediction of thermal flows through a curved square duct
and investigated transitional behavior of the unsteady
solutions. However, complete bifurcation structure as well
as linear stability of the thermal and non-thermal flows
through curved ducts with square and rectangular cross
sections were performed by Mondal (2006).
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One of the most mmportant applications of curved
duct flow is to enhance the thermal exchange between two
sidewalls, because it 13 possible that the secondary flow
may convey heat and then increases the heat flux between
two sidewalls. Chandratilleke and Nursubyakto (2003)
presented numerical to describe the
secondary flow characteristics in the flow through curved

calculations

ducts of aspect ratios ranging from 1 to & that were heated
on the outer wall, where they studied for small Dean
numbers and compared the numerical results with their
experimental data. Recently, Yanase et al. (2005a)
performed numerical investigation of thermal (Gr = 100)
and non-thermal flows (Gr = 0) through a curved
rectangular duct with differentially heated wvertical
sidewalls, where they obtained many branches of steady
solutions and addressed the time-dependent behavior of
the unsteady solutions. Yanase et al. (2005b) studied the
bifurcation structure as well as the effects of secondary
flows on convective heat transfer for moderate Grashof
numbers. However, complete bifurcation structure as well
as stability of thermal flows for larger Grashof numbers are
yet umresolved, which 15 important to mvestigate from
both engineering and scientific point of view.

In the present research, a numerical study 1s
presented for the fully developed two-dimensional flow of
viscous incompressible fluid through a curved rectangular
duct for larger Grashof numbers. Flow characteristics are
studied over a wide range of the Dean number by finding
the steady solutions and investigating their linear
stability. Flow patterns on each of the branches are also
obtained.

GOVERNING EQUATIONS

Consider a hydrodynamically and thermally fully

developed  two-dimensional flow  of  viscous
incompressible fluid through a curved duct with a
constant curvature. The cross section of the duct is a
rectangle with width 2 d and height 2 h. It 1s assumed that
the outer wall of the duct is heated while the inner one is
cooled. The temperature of the outer wall 15 T, + AT and
that of the inner wall is Ty + AT , where AT > 0. The x, ¥
and z axes are taken to be m the horizontal, vertical and
axial directions, respectively. It 15 assumed that the flow
is uniform in the z direction and that it is driven by a
constant pressure gradient G along the center-line of the
duct as shown in Fig. 1.

All the variables are nondimensionalized by using
the representative length d, the representative velocity

1, = v/d, the representative time d/U, = d*/v, where v is

0 C \
Cold

Fig. 1. Coordinate system of the curved rectangular duct

the kinematic viscosity. u, v and w are the velocity
components in the x, y and z directions respectively.
Velocity components in the x and y directions are
nondimensionalized by U, and by U, /Jﬁ m the z
direction, where & = &/L. is the curvature of the duct, L is
the radius of the duct curvature and temperature is
nondimensionalized by AT. Henceforth, all the variables
are nondimensionalized if not specified. The sectional
stream function | is introduced as

wot w1 ow (1)
1+68x dy 1+ 8x dx

A new coordinate variable v 1s introduced in the y
direction as v = &, where ¢=h/d is the aspect ratio of the
cross section. From now on, y denotes ¥ for the sake of
simplicity. The basic equations for w,  and T are then
derived from the Navier-Stokes equations and the energy
equation with the Boussinesq approximation as,

2
(1+ SX)@+ 10(ww) D+ 0V _ (1+8x)A,w
o £ o(xy) 1+8x 2

8 by ow

W+ 0
£(1+6x)6y &x

2
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The Dean number Dn, the Grashof n umber Gr and
the Prandtl number Pr which appear in Eq. (2) to (4) are
defined as

3 3
_Gd7 24 g AT Y (6

uv YL~ vz k

Dn

where 1, v, ¥ and g are the viscosity, the coefficient of
thermal expansion, the coefficient of thermal diffusivity
and the gravitational acceleration, respectively. The rigid
boundary conditions for w and 1 are used as

Wit y)=wix, £1)=y(zLy)

B _ By _ By B (7)
- W(X,i 1) - a(ila)/) - g(xai 1) - 0:

and the temperature T is assumed to be constant on the
walls as

T(Ly)=1 T(-Ly)=-L T(xtl)=x, (&

NUMERICAL METHOD

In order to solve the Eq. (2) to (4) numerically the
spectral method 1s used. This 15 the method which 1s
thought to be the best numerical method to solve the
Navier-Stokes equations as well as the energy equation
(Gottlieb and Orszag, 1977). Detail of this method 1s
discussed in Mondal (2006). By this method the variables

are expanded in a series of functions consisting of the
Chebyshev polynomials. That is, ®@(x) and P, (x) are
expressed as

@, (x)=(1-x*)C, (x), P, (x)=(1-x) C,(x) @
where
C,(x)= cos(ncos’1 (x)) (10)

15 the nth order Chebyshev polynomial, w(x, ¥, t),
P(x, y, t) and T(x, y, t) are expanded in terms of the
expansion functions @, (x) and P (x) as

w(x,y,t):mzl: gwmn(t)dlm(x)(bn(y),
UCSTED IO MO TN NI
T(x,y,t):mzhj‘a BZ:Tmn(t)(IJm(x)(Iln(y)+x

where M and N are the truncation numbers in the x
and y directions, respectively. The expansion coefficients
Wy W and T, are then substituted into the basic
Eq. 2-4 and the collocation method 1s applied. As a result,
the nonlinear algebraic equations for w,, P, and T,
are obtained. The collocation points are taken to be

xl—co{n[l ! H, i=1...M+1
M+2 (12)

yJ—CO{"‘T(l—NJ 2]}, j=L..N+1
+

The steady solutions are then obtained by the Newton-
Raphson iteration method assuming that all the
coefficients are time independent. The convergence is
assured by taking e, < 107", where subscript p denotes
the iteration number and £, is defined as

(Wi o Vo (e, Y

In the present numerical calculations, M = 20 and N = 40
have been used for sufficient accuracy of the solutions.
Numerical calculations are carried out for the curvature
8 = 01 over a wide range of the Dean number O < Dn
< 1000 for the Grashof number 1000 < Gr < 1500 for = 2.
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RESISTANCE COEFFICIENT

In the present study, the resistance coefficient A is
used as the representative quantity of the flow state. It is
also called the hydraulic resistance coefficient and is
generally used in fluids engineering, defined as

where quantities with an asterisk denote dimensional
ones, {) stands for the mean over the cross section
of the rectangular duct, p the density and d°, =
4(2dx2d¢)/(4dx4d0) is the hydraulic diameter. The mean
axial velocity (w*) is calculated by

(W)= [ oy (9

Since (P,*-P,*)/Az* = G, A is related to the mean non-
dimensional axial velocity {w) as

_ 8(-/28Dn (1)

1+ 0)(w)
where

(w)= \/%d<w'>/v .

In the present study, A is used to denote the steady
solution branches.

RESULTS AND DISCUSSION

Solution structure and steady solutions: We obtain five
branches of asymmetric steady solutions over a wide
range of the Dean number 0 < Dn < 1000 for the Grashof
number 1000 < Gr < 1500. Figure 2 and 3a show solution
structures of the steady solutions for Gr = 1000 and
Gr = 1500, respectively. As seen in Fig. 2 and 3a, the
bifurcation structures are topologically nearly similar for
any Gr in the range. Therefore, in the present study, a
single case of the Grashof number Gr = 1500 will be
discussed in detail. The steady solutions are obtained by
the path continuation technique with different initial
guesses as discussed by Mondal (2006). Figure 3a shows
bifurcation structure of the steady solutions for Gr = 1500
and 100 < Dn < 1000 using A, the representative quantity

0.6
o= emwmse First branch
H Second branch
osd % Third branch
: \ ~ + Fourth branch
y wweeseseeeee ifth branch
1
\
0.4 \
y
< Ma
0.3
0.2
0.1 T T T T T
200 400 600 800 1000
Dn
Fig. 2: Steady solution branches for Gr = 1000 and 100 <
Dn < 1000

of the solutions. The steady solution branches are named
the first steady solution branch (first branch, long dashed
line), the second steady solution branch (second branch,
thin solid line), the third steady solution branch (third
branch, thick solid line), the fourth steady solution branch
(fourth branch, dash dotted line) and the fifth steady
solution branch (fifth branch, dotted line), respectively. In
order to see the intricate branch structure as well as to
distinguish the steady solution branches from each other,
an enlargement of Fig. 3a is shown in Fig. 3b at larger
Dean numbers, where it is seen that the steady solution
branches are independent and there exists no bifurcating
relationship among the branches in the parameter range
investigated in this study. However, some branches
overlap at larger Dean numbers but they represent
different branches as discussed later. The solution
branches are distinguished by the nature and number of
secondary flow vortices appearing in the cross section of
the duct. In this regard, it should be remarked that
Yanase er al. (2005a) obtained both symmetric and
asymmetric steady solutions for the non-thermal flow in
a curved rectangular duct. In the present study of thermal
flows, however, we obtain only asymmetric steady
solutions. The reason is that heating the outer wall causes
deformation of the secondary flow and yields asymmetry
of the flow. In the following, the steady solution branches
as well as flow patterns on the respective branches are
discussed.

The first steady solution branch: The first steady
solution branch for Gr = 1500 is solely depicted in
Fig. 4a for 10 < Dn < 1000. It should be remarked here that
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Fig. 3: (a) Steady solution branches for Gr = 1500 and 100 < Dn < 1000, (b) Enlargement of (a) at larger Dean numbers

(660 < Dn < 1000)

among five branches of steady solutions, this is the only
branch which exists throughout the whole range of the
Dean number. As seen in Fig. 4a, the first branch starts
from point a (Dn = 10) and goes to the direction of
increasing Dn and decreasing A up to point ¢ (Dn = 1000)
without turning on its way. To observe the change of the
flow patterns and temperature distributions, contours of
typical secondary flow, axial velocity and temperature
profile on the first branch are shown in Fig. 4b for several
values of Dn, where the contours of Jr, w and T are drawn
with the increments Ay = 0.6, Aw = 10 and AT = 0.2,
respectively. The same increments of P, w and T are used
for all the figures in this paper, if not specified. The right-
hand side of each duct box of ¥, w and T is in the outside
direction of the duct curvature. In the figures of the
secondary flow, solid lines (y>0) show that the
secondary flow is in the counter clockwise direction while
the dotted lines (Y < 0) in the clockwise direction.
Similarly, in the figures of the temperature field, solid lines
are those for T > 0 and dotted ones for T<0. As seen in
Fig. 4b, the first branch contains one- and two-vortex
solutions which are asymmetric with respect to the
horizontal center plane y = 0. Heating the outer wall
causes deformation of the secondary flow and yields
asymmetry of the flow. With the heating and cooling the
sidewalls, changes to fluid density induce thermal
convection. The resulting flow behavior in the cross
section is, therefore, determined by the combined action
of the radial flow caused by the centrifugal body force
and the convection by the temperature difference. At
smaller Dean numbers, the centrifugal body force is
weaker and the thermal convection dominates the tlow;

the resulting flow consists of a single vortex, which
occupies the entire cross section. At larger Dean
numbers, on the other hand, the centrifugal body force
becomes stronger and the secondary flow is gradually re-
established. In this study, the name number-vortex
solution is used when the number of secondary vortices
is clearly counted, since such kind of naming is commonly
used in this field of study. As seen in Fig. 4b, maximum
axial velocity is shifted near the outer bend of the duct as
Dn increases.

The second steady solution branch: The second steady
solution branch, shown by a thin solid line in Fig. 3a, is
solely depicted in Fig. 5a for 250 < Dn < 1000. The branch
is comparatively entangled than other branches with
many turning points throughout its way. As seen in
Fig. 5a, the branch starts from point a at larger Dean
number (Dn = 1000) and goes to the direction of
increasing A as Dn decreases and turns smoothly at point
b (Dn = 262.12). The branch then goes to the direction of
increasing Dn and decreasing A up to point ¢ where it
turns again to increasing A and arrives at point d. The
branch then extends to the direction of increasing Dn and
decreasing A and finally arrives at point [ (Dn = 1000) with
turning on its way at points e, f. g and h. Contours of
secondary flow, axial velocity and temperature profile at
several values of Dn on this branch are shown in Fig. 5b.
It is found that the secondary flow is a two-vortex
solution from point a to point b (Dn decreases), but on the
route from point b down to point I an additional pair of
secondary vortices appear in the central part of the right-
hand side of the duct cross section. These additional
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Fig. 4: (a) First steady solution branch with the region of
linear stability (solid bold line) for Gr = 1500. (b)
Contours of secondary flow (top), axial velocity
(middle) and temperature profile (bottom) for the
first steady solution branch

vortices are called Dean vortices which play an important
role in the enhancement of heat transfer. As seen in
Fig. 5b, the maximum axial velocity is shifted near the
outer wall of the duct and as the secondary flow is
strengthened (i.e., Dn increases), the region of the axial
velocity is separated into two high velocity regions.

The third steady solution branch: The third steady
solution branch, shown by a thick solid line in Fig. 3a, is
exclusively depicted in Fig. 6a. As seen in Fig. 6a, the
branch starts from point a (Dn = 1000) and goes to the
direction of decreasing Dn as A becomes large and turns
smoothly at point b (Dn = 400.08). The branch then goes
to the direction of increasing Dn and decreasing A which
extends up to point d (Dn = 1000) without further turning

0.28

0.244

0.164

T T L) T
250 500 750 1000

Fig. 5: (a) Second steady solution branch for Gr = 1500.
(b) Contours of secondary flow (top), axial
velocity (middle) and temperature profile (bottom)
for the second steady solution branch

on its way. We show the secondary flow patterns, axial
velocity distribution and temperature profiles at several
values of Dn on this branch in Fig. 6b. It is found that the
third branch starts with a two-vortex solution at point a
and becomes a four-vortex solution at point b which
remains a four-vortex solution up to point c. As seen in
Fig. 6b, the maximum axial velocity is pushed near the
outer wall of the duct due to strong centrifugal force as
Dn increases.

The fourth steady solution branch: The fourth steady
solution branch is shown in Fig. 7a. As seen in Fig. 7a, the
branch exists only for larger Dean numbers (650 < Dn <
1000) and a little bit complex like the second branch with
some turning points on its way. The branch starts from
point a (Dn = 1000) and goes to the direction of increasing
A as Dn decreases and experiences a gentle turning at
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Fig. 6: (a) Third steady solution branch for Gr = 1500. (b)
Contours of secondary flow (top), axial velocity
(middle) and temperature profile (bottom) for the
third steady solution branch

point b (Dn = 664.15) in the opposite direction. The
branch then goes to the direction of increasing Dn and
decreasing A up to point ¢ (Dn = 943.07), where it
turns again to the opposite direction up to point d
(Dn = 719.20). The branch finally arrives at point e
(Dn = 1000) extending in the direction of increasing
Dn and decreasing A with some gentle turning on its way.
To observe the change of the flow characteristics,
contours of secondary flow, axial velocity and
temperature profile at several values of Dn on this branch
are shown in Fig. 7b, where it is seen that the secondary
flow is a two-, four-, six- and eight-vortex solution. As
seen in Fig. 7b, the maximum axial velocity is shifted near

0.18+

0.164

0.14-

T T T T
700 800 900 1000
Dn

®

Dn 1000@)  664(b) 943(c)  719(d) 850  1000(e)

Fig. 7. (a) Fourth steady solution branch for Gr = 1500.
(b) Contours of secondary flow (top), axial
velocity (middle) and temperature profile (bottom)
for the fourth steady solution branch

the outer wall of the duct and the region of the axial
velocity is separated into several high velocity regions
with increasing Dn. Temperature distribution is also
vigorous as the secondary flow becomes strong.

The fifth steady solution branch: The fifth steady
solution branch, shown by a dotted line in Fig. 3a, is
solely depicted in Fig. 8a. As seen in Fig. 8a, the path of
the branch is gentle like the third branch. It starts from
point a (Dn = 1000) and goes to the direction of increasing
A as Dn becomes small and turns smoothly at point b
(Dn = 553.10). The branch then goes to the direction of
increasing Dn and decreasing A and extends up to point
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Fig. 8: (a) Fifth steady solution branch for Gr = 1500. (b)
Contours of secondary flow (top), axial velocity
(middle) and temperature profile (bottom) for the
fifth steady solution branch

d (Dn = 1000). We show the secondary flow patterns,
axial velocity distribution and temperature profiles at
several values of Dn on this branch in Fig. 8b. As seen in
Fig. 8b, the branch is composed of two-, four- and six-
vortex solutions. Maximum axial velocity is pushed near
the outer wall as Dn increases and the temperature
distribution is strengthened as the secondary vortices
become stronger.

Linear stability of the steady solutions: In this paper, we
examine linear stability of the steady solutions against
only two dimensional (z-independent) perturbations. To
do this, the eigenvalue problem is solved which is
constructed by the application of the function expansion

Table 1: Linear stability of the first steady solution branch for Gr = 1500

Dn A o, o

0 0.000000 -9.1317x1071 0

50 0.961439 -9.5462>107" 0

100 0.539385 -9.2673+107! 0

105 0.520232 -2.641821072 +8.085
106 0.516602 4.0481+1072 +7.957
125 0.457146 3.5542 +2.818
143 0.421276 6.3946+1072 +7.957x10
144 0.419762 -3.8057+1072 +1.185-10
165 0.389953 -1.1998x1072 +1.464x10
166 0.388609 4.2156x1072 +1.469x10
300 0.277386 1.0757+10 +5.204
500 0.212141 2.3176x10 +2.791
1000 0.143013 5.9401x10 +4.445x10

method together with the collocation method to the
perturbation equations obtained from Eq. (2-4). It is
assumed that the time dependence of the perturbation is
e®, where 0 = 0, + i0, is the eigenvalue with o, the real part,
o, the imaginary part and ; _ /77 . If all the real parts of
the eigenvalue ¢ are negative, the steady solution is
linearly stable, but if there exists at least one positive real
part of the eigenvalue, it is linearly unstable. In the
unstable region, the perturbation grows monotonically for
o, = 0 and oscillatorily for o, = 0.

On the basis of the above-mentioned criteria, linear
stability of the steady solutions is investigated. It is
found that among five branches of steady solutions, only
the first branch, which exists throughout the whole range
of the Dean number, is linearly stable in a couple of
interval of Dn, while the other branches are linearly
unstable. The eigenvalues of the first steady solution
branch are listed in Table 1 where the eigenvalues with
the maximum real part of ¢ are presented. Those for the
linearly stable solutions are printed in bold letters. As
seen in Table 1, the stability region exists for 0 < Dn < 105
and 144 < Dn < 165 and the perturbation grows
oscillatorily (o; # 0) for Dn>105 . Therefore, the Hopf
bifurcation occurs at Dn = 105. Linearly stable steady
solution regions are shown with thick solid lines in
Fig. 4a.

Phase diagram of the steady solutions: Finally, the
distribution of the steady two-, four-, six- and eight-vortex
solutions, obtained at different values of the Dean number
on the multiple branches, is shown in Fig. 9 in the Dean
number vs. stream function plane (Dn-{ plane) for
0 < Dn < 1000, where the regions of different solutions are
displayed with shading surrounded by solid boundaries.
In this picture, the vortices are represented by different
symbols. In this study, it is found that only two-vortex
solutions are generated for small Dn’s. However, as Dn
is increased gradually, the number of vortices also
increases. We obtain two-vortex solutions for 0 < Dn
< 262, two- and four-vortex solutions for 262 < Dn <720
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Fig. 9: Phase diagram of the steady solutions for Gr = 1500

and two-, four-, six- and eight-vortex solutions for
Dn > 720. Thus from Fig. 9 we obtain a quick knowledge
about the flow structure for Gr = 1500.
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