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Abstract: Data obtained in biomedical research 1s often skewed. Examples include the incubation period of
diseases like HIV/AIDS and the survival times of cancer patients. Such data, especially when they are positive
and skewed, is often modeled by the log-normal distribution. Tf this model holds, then the log transformation
produces a normal distribution. We consider the problem of constructing confidence intervals for the mean of
the log-normal distribution. Several methods for deing this are known, including at least one estimator that
performed better than Cox’s method for small sample sizes. We also construct a modified version of Cox’s
method. Using simulation, we show that, when the sample size exceeds 30, it leads to confidence intervals that
have good overall properties and are better than Cox’s method. More precisely, the actual coverage probability
of our method 1s closer to the nominal coverage probability than is the case with Cox’s method. In addition, the
new method is computationally much simpler than other well-known methods.
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INTRODUCTION

Data obtained in biomedical research is often skewed.
Examples include the incubation period of diseases like
HIV and survival times of cancer patients. Since statistical
inference based on the normal distribution 1s well known,
an established way to deal with non-normal data is to
apply a transformation that makes them normally
distributed. The log transformation 13 one of those most
commonly used for this purpose. It 1s especially
recommended when the data come from a population that
1s positive and skewed. A variable X is said to have a log-
normal distribution with parameters p and ¢ if Y = logX is
normally distributed with mean p and variance ¢°. In this
case the mean 6 of X is

o e[;.w%crz] .

We consider the problem of constructing confidence
intervals for the mean 6 of the log-normal distribution.
Zhou and GAO (1997) did simulations to construct
and compare confidence intervals using the four accepted
methods at that time. These are the naive method,
Angus's conservative method, Angus's Parametric
Bootstrap (PB) method and Cox's method. Their
simulation study revealed that the naive method was
wholly inappropriate and contrary to what one would

expect, produced an mcrease in coverage area with an
increase 1n sample size. When the sample size was fairly
small (n=11), coverage error was overall the smallest for
the (PB) method but this result was only obtained when
the variance was small. It was also found that the (PB)
method was negatively biased.

Cox's method yielded confidence intervals that had
comparatively the smallest coverage error for moderate
sample sizes (as small as 50). However, unlike the (PB)'s
method, Cox's method provided coverage error values that
did not significantly increase as 0° increased.

Wu et al. (2003) derived a modified signed log-
likelihood ratio method that, for small samples of size less
than 30, outperformed both Cox's method and the (PB)
method for all the comparative criteria by Zhou and Gao
(1997).

In the current study, we revisit this classical problem
and derive a modified version of Cox's method to provide
a more efficient estimator. Unlike all the previous papers
mentioned, our approach will deal exclusively with
samples of size greater than 30. The proposed estimator is
compared with the existing methods via the three criteria
used by Zhou and Goa (1997), coverage error, interval
width and relative bias. We show that coverage error is
smaller than any of the other methods, including the
modified signed log-likelihood ratio method of Wu et al.
(2003), for sample size n>30.
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THE FIVE MAIN APPROACHES

Here, we review the five existing methods for
constructing two-sided 1-¢ level confidence intervals for
a log-normal mean 6. Let X, X,,...,X_ be a random sample
from a log-normal distribution with parameters 1 and o7,
let Y =log X, forI =1,2,..nand let

6= [I'Hl?jz] .

=¢

be the mean of the log-normal.

The Naive method: This method constructs a confidence
interval for 1, the mean of the log-transformed data, using
the normal theory as

Next an antilogarithm function 1s applied to transform the
confidence limits back to the original scale to obtain a
confidence interval for

BZGXP[?J_FZ

3.
(-5]vn
For large n, this method leads to biased estimators.

Cox’s method: One way to estimate 0 is to estimate p and
o’ and then to make use of the relationship

o e[wéuz] .

If we estimate p and ¢” by the sample mean Y and the
sample variance $°, respectively of the observations Y
then we get the point estimator of [ of B=log® to be

s oo 1
=Y+ -8
P 2

Since (Y,8%)is a complete, sufficient statistic for (1, 0%)
and

.
=Y+
P 2
1s an unbiased estimator of
logO=p+ lS2
& 2

it follows from a well-known theorem (Lehmann, 1983)
that B is an UMVUE of log 0. From the
independence of Y and S* we get that the variance of jis

Here we note that, at this point in their discussion of
the relevant point estimators, Zhou and Gao (1997) made
an error 1n stating that

5 s'
—+
n 2{n-1)

is an unbiased estimator of

2z 4
[s3 [s3

n +2(n71) '

Although E(S?) = ¢?, ' is not an unbiased estimator of ¢,
In fact, because

1t can be easily shown that

E(s')=

Thus the correct unbiased estimator of Var (f;) of this
form 1s:

S g

— 4

n 2(n+1)

Thus 15 also the UMVUE of

2 4
o 8]

n +2(n—1) '

Assuming approximate normality for 3, the approximate
confidence limits for 6 may be obtained in the form

(pu: - eXp (B—"—Zm‘;)-

Angus's conservative method: Angus proposed a
conservative method for construction of a confidence
interval for InB based on the following approximate
pivotal statistic:

[Y+imﬂdﬁ
’ﬂm‘——%;ﬁt%j?‘ (1)

when the sample is finite however, (1) has the same

distribution as:
2
N+ Gﬂ M 1
2 (n-1)

e e

T{c)=
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where, N and %’ (n-1) are independent, N is the standard
normal and *(n-1) is a ¥*(n-1) is a y’- distribution with n-1
degrees of freedom. This leads (Zhou and Gae, 1997), to
the lower and upper lunits respectively of the (1-a)
confidence interval for In 6.

A parametric bootstrap method: The bootstrap interval
described by Angus applies the parametric t-percentile
bootstrap method to the approximate pivotal statistics
n(6) Eq. 1 By letting t; and t, be the % percentile and
the 1- % percentile of m(0), respectively. Hence a
theoretical 1-¢ level confidence level for Inf is

5’ (HSZJ ()
N 2)

2
In= g 1+S—
2/ = &
> Tl oyt

The unknown quantiles t; and t, can be estimated by
a parametric bootstrap sample.

Modified signed log-likelihood ratio method: Wu et al.
(2003) asserted that Cox's method did not perform well in
small sample settings due its nonquadratic and
asymmetric shape of the likelihood profile for small n.
They instead considered the modified signed log-
likelihood ratio introduced by Banndroff-Nielsen (1986
and 1991), generally known as the r’ formula:

o) MW
v =r* (y)+r{y)+r{y 1log (4)

(o) o e o
where, u (V) is a quantity and the general form of r is
given in the Appendix. r being asymptotically distributed
as a standard normal variate with third order accuracy.
Therefore, an approximate 100 (1-¢)% confidence interval

based on 1 is
{w,

where unlike Cox's interval, this r* interval calculates the
confidence limit from the observed asymmetric likelihood -
based function r* (V) which theoretically should have
achieved a more accurate coverage probability than Cox's.
The modified signed log-likelihood ratio method produced
zero coverage errors and almost negligible average biases
and both the coverage probabilities and average biases
remamed nearly constant as the variance increased.

™ ()

< Zu} &)

2

THE IMPROVED COX’S CONFIDENCE
INTERVAL(CI) ESTIMATORS

Firstly, we note a simple fact regarding the concept of
estimation. An estimator, say t of the parameter say, 0 is
examined for its efficiency on the following counts:

Bias (t) = B[t - E(t)] = B (t), say.

Variance (t) = E [t-E (1)]* = V (t}, say

Mean square Error (t) = MSE (t) = E [t - 0]* = M (t), say.
Tt could easily be checked that:

Mt =V(D+B{).

Let us consider:

t*:i(usz/(niz)):i(n v) (6)

Where,\f:(sz/(n izj)

Smee (x,s°)a jomtly complete sufficient statistic for (230,
o), 1t suffices to find an unbiased estimator of M (£*) =V
(t*) 4+ B (t*), as a function of (%, ™) alone. This estimator
would be a UMVUE. From (5), we have

M {A*VYM({(X) =R, say —

- [%)E{(i— W)+ %}
= 142A+B

Where, A=(1/c)HEGE*(X-py/x)and B = (1/0%)
E=(s*/(nx)) Using the results that X~N(p0%n),
{n-1)s%¢°~ y*n-1) and that X and s* are independent, we
can find unbiased estimators of A and B as follows.

A= [%}EE [g (% u)}
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Hence A = -v is an unbiased estimator of A. Further,

o[ (&

Hence B = ((n+1)/(n-1)v is an unbiased estimator of
B.Let R=1-2A + B . Then R is an unbiased estimator of
R and hence an UMVU estimator of R. We can write R as

R—12v+[n—+1jv
n-1

1 (ﬂ - 3]\, (7)
n-—1
Hence,
N (%) = (s2/n). [1 - (0-3)/(n-1)] (&)
and
B(") =(s'/(n)) ©
Therefore,
V)= N+ (B oy (19

Now, we are ready to propose our mmproved Cls, as
follows:

Appendix: Forn = 51

Let’s call the Cox’s CT (Lower CI(: CT low) and Upper CI
(:CI lugh) himits), as Estimator 1, 1.e.,

Estimator 1 low: X +s%2- Z " [s,/n +s%2(n-1)]"
Estimator 1 high: X482+ Z . *[s/n+s/2(n-1)]""

As per our proposition the efficient CT’s (Lower CT{CT
low) and Upper CI(CI lugh) limits ) for the Lognornmal mean
0:

Estimator 2 low = t*+s°- Zy_y*[ - (t*)]"
And

Estimator 2 high=t* + 7 , ., *[ ¥ (t*)]"
SIMULATION AND CONCLUSIONS

As mentioned m the beginning, we emulate the
Simulation Framework of Zhou and Gao (1997) for the
good reasons explained in their paper. Adopting the same
structure of their simulation study, we also have carried
out a simulation study in this section, of which the results
are reported in the Tables in the Appendix.

Using 6000 samples (of illustrative sizes of 51, 101,
151, 201 and 301) from the relevant lognormal distribution
with illustrative values of 0% 1.00,1.25,1.50,1.75 and 2.00
(assuming like in Land (1971), for the sake of simplicity of
llustration and without any loss of generality, that the
population mean p = - ¢%2), we have calibrated the
characteristics of the Cls : Coverage Probability (Cvg.
Prob.), Coverage Error (Cvg. Error), Length of the CT
{(Length), Proportiony Probability of cases of the CI not
covering the true value of the actual population mean,
when CIs are on the left/right of the true value of the
population mean(Left/Right Bs., respectively) and hence
the Relative Bias (Rel. Bs.).

The results of the simulation study are tabulated in
the five tables given in the appendix, which deal with
sample sizes of 51, 101, 151, 201 and 301.

Overall, the Estimator 2 performs better than Cox’s
method, in the sense that the achieved coverage
probability is closer to the nominal probability of 0.90 (in
other words, the coverage error is smaller).

Variance Estimator Cvg. Prob Cvg. Err Length Lett Bs. Right Bs. Rel. Bs.

1 Estimator 1 0.894500 0.005500 0.564413 0.072333 0.033167 0.371248
1 Estimator 2 0.904767 0.004767 0.564796 0.093317 0.001917 0.959748
1.25 Estimator 1 0.895883 0.004117 0.658311 0.072617 0.031500 0.394910
1.25 Estimator 2 0.904767 0.002767 0.658344 0.091150 0.006083 0.874871
1.5 Estimator 1 0.893917 0.006083 0.747801 0.075983 0.030100 0.432522
1.5 Estimator 2 0.987117 0.002883 0.747823 0.092567 0.010317 0.799449
1.75 Estimator 1 0.895567 0.004433 0.838174 0.075233 0.029200 0.440792
1.75 Estimator 2 0.891170 0.001883 0.838194 0.089683 0.012200 0.760510
2 Estimator 1 0.894000 0.006000 0.924802 0.078817 0.027183 0.487107
2 Estimator 2 0.895250 0.004750 0.924818 0.092350 0.012400 0.763246
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Forn=101
Variance Estimator Cvg. Prob. Cvg. Br. Length Lett Bs. Right Bs. Rel. Bs.
1 Estimator 1 0.895817 0.004183 0.401299 0.065717 0.038467 0.261558
1 Estimator 2 0.200767 0.000767 0.401302 0.080150 0.019083 0.615385
1.25 Estimator 1 0.897767 0.002233 0.466858 0.067217 0.035017 0.314966
1.25 Estimator 2 0.900750 0.000750 0.466860 0.080033 0.019217 0.612762
1.5 Estimator 1 0.898383 0.001617 0.531154 0.065483 0.036133 0.288831
1.5 Estimator 2 0.900517 0.000517 0.531156 0.077600 0.021883 0.560060
1.75 Estimator 1 0.897517 0.002483 0.594364 0.067933 0.034550 0.325744
1.75 Estimator 2 0.897533 0.002167 0.594365 0.079183 0.022983 0.550082
2 Estimator 1 0.898117 0.001883 0.655450 0.069967 0.031917 0.373466
2 Estimator 2 0.898533 0.001467 0.655451 0.079583 0.021883 0.568660
Forn=151
Variance Estimator Cvg. Prob. Cvg. Err. Length Left Bs. Right Bs. Rel. Bs.
1 Estimator 1 0.896617 0.003383 0.3280390 0.063350 0.040030 0.225536
1 Estimator 2 0.898217 0.001783 0.3280390 0.076783 0.025000 0.508760
1.25 Estimator 1 0.899867 0.000133 0.3818700 0.062783 0.037350 0.253995
1.25 Estimator 2 0.200083 0.000083 0.3818700 0.074150 0.025567 0.487214
1.5 Estimator 1 0.897733 0.002267 0.4339820 0.065417 0.036850 0.279335
1.5 Estimator 2 0.898483 0.001517 0.4339830 0.075183 0.026333 0.481202
1.75 Estimator 1 0.200400 0.000400 0.4855310 0.063133 0.036467 0.267738
1.75 Estimator 2 0.900533 0.000533 0.4855310 0.071767 0.026700 0.457684
2 Estimator 1 0.899000 0.001000 0.5359874 0.065533 0.035467 0.297690
2 Estimator 2 0.899100 0.000900 0.5359740 0.073850 0.027050 0.463826
Forn=201
Variance Estimator Cvg. Prob. Cvg. Err. Length Lett Bs. Right Bs. Rel. Bs.
1 Estimator 1 0.895875 0.001250 0.284285 0.060717 0.040533 0.199342
1 Estimator 2 0.899750 0.000250 0.284285 0.072183 0.028067 0.440067
1.25 Estimator 1 0.899483 0.000517 0.331042 0.060133 0.040383 0.196485
1.25 Estimator 2 0.900567 0.000567 0.331042 0.069467 0.029967 0.397251
1.5 Estimator 1 0.200667 0.000667 0.376590 0.060967 0.038367 0.227517
1.5 Estimator 2 0.200050 0.000050 0.376359 0.069367 0.040383 0.402055
1.75 Estimator 1 0.900133 0.000133 0.420651 0.062117 0.037750 0.423992
1.75 Estimator 2 0.900000 0.000000 0.420651 0.069333 0.296670 0.400673
2 Estimator 1 0.898983 0.001017 0.464453 0.062900 0.038117 0.245339
2 Estimator 2 0.899317 0.000683 0.464453 0.069983 0.030700 0.390167
Forn =301
Variance Estimator Cvg. Prob. Cvg. Err. Length Left Bs. Right Bs. Rel. Bs.
1 Estimator 1 0.898133 0.001867 0.232327 0.058417 0.043450 0.146924
1 Estimator 2 0.899217 0.000783 0.232327 0.067567 0.332170 0.340830
1.25 Estimator 1 0.899183 0.000817 0.270332 0.059450 0.041367 0.179368
1.25 Estimator 2 0.899883 0.000117 0.270332 0.067750 0.033367 0.340036
1.5 Estimator 1 0.900883 0.000883 0.307407 0.057467 0.041650 0.159576
1.5 Estimator 2 0.900700 0.000700 0.307407 0.064883 0.034417 0.306814
1.75 Estimator 1 0.899867 0.000133 0.343681 0.060350 0.039783 0.205393
1.75 Estimator 2 0.200117 0.000117 0.343681 0.066400 0.032882 0.337586
2 Estimator 1 0.898933 0.001067 0.379563 0.061100 0.039967 0.209103
2 Estimator 2 0.899783 0.000217 0.379563 0.066250 0.033967 0.322135
REFERENCES Wu, I, A CM Wong and G.Y. Jiang, 2003. Likelihood-
based confidence mterval for log-normal mean.
Land, CE., 1971. Confidence mtervals for linear functions Stat. Med., 22: 1849-1860.
of the normal mean and variance. Ann. Math. Stat., Zhou, X H. and S. Gao, 1997. Confidence intervals for the
42: 1187-1205. log-normal mean. Stats. Med., 16: 783-790.

Lehmann, EI., 1983. Theory of Point Estimation.
John Wiley and Sons, New York.

1794



	JAS.pdf
	Page 1


