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Abstract: This study outlines the artificial neural networks application to improve the prediction capability by
mvestigating the effect of data sampling, network type and configuration as well as the inclusion of past data
at the neural network mput. Multi layered perception and Elman network were used. Validation results using
mput data based on 5 min and 1 h sampling was compared. It was found that the 1 h sampling yielded better
prediction. Different network configurations were also compared and it was observed that although the larger
network showed better prediction capability during the training phase, it was the smaller network that
demonstrated better prediction in the validation stage. The mclusion of past data into the neural network was
also studied. The generalisation degraded as more past data were included.
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INTRODUCTION

to the
raw water

Coagulation refers agglomeration of
suspended particles in through  the
neutralisation of negative charges inherently present in
suspended particles. The coagulant used m the Moyog
water treatment plant (Sabah, Malaysia) was in the form of
crystallised AL(SQ,),. To date, the complexity of the
dynamics of coagulation 1s not fully understood.
Preliminary observation of plant data suggests that it
is a multivariable and non-linear physicochemical process
depended on a range of operating parameters as well as
water characteristics. It 1s also a tme-dependent process
where the resultant 1s a function of previous parameters.
Clarified water turbidity is a parameter that can be used
for immediate on line assessment on the success of
coagulation (Holger et al, 2004). The ability to
successfully predict clarified water turbidity allows for the
adjustment of the plant operating variables to counteract
any anticipated quality deterioration.

Current methods to achieve the correct alum dosage
for coagulation mcludes jar tests (Baxter et al., 1999,
Too et al., 200, Yu et al,, 2000) look-up tables or empirical
equations and operator’s experience. All these methods
are reactive, based control where deterioration m water
quality would have to be detected first before the
calculation of the correct chemical dosage can be initiated.
This can lead to poor water quality at the plant effluent.

Predicting Clarified Water turbidity (CW Turbidity)
allows the detection of potential quality
deterioration before it happens. Operators are then able to
manipulate certain variables, specifically chemical
dosages (alum, lime and polymer) at the mput of neural
network and determine whether these values yield
desirable future clarified water turbidity. Successful
prediction of clarified water turbidity depends on water
quality at required regulation standards, reduction of

water

expensive waste coagulation chemicals and to reduce
manpower required to control the process. Clarified Water
turbidity (CW turbidity) can be used as an immediate
indicator on the success of the coagulation process. The
main objective of this study was to develop an artificial
neural network to predict the clarified water turbidity at
the effluent of the pulsator type clarifier at Moyog water
treatment plant.

MOYOG WATER TREATMENT PLANT

This study 13 based upon the operation of the
Moyog water treatment plant, situated 15 ki from Kota
Kinabalu, Sabah as shown in Fig. 1. The Raw Water (RW)
from the Babagon dam is channeled to the aerator for the
removal of taste and odour as well as oxidising dissolved
manganese. After aeration, the water 1s added with alum,
lime and polymer before going to the pulsator where
clarification takes place. The pulsator is the critical unit in
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Fig. 1. Moyog plant schematic process diagram

the clarification process as it removes all particulates that
have precipitated due to coagulation and flocculation by
the addition of alum. The water from the pulsator 1s known
as dosed water (DW). After leaving the pulsator, water is
filtered and disinfected before distribution.

BACKGROUND

Isidore et af. (2000) utilised mult: layered perception
(MLP) for the prediction of CW turbidity. Inputs to the
network mnclude:

+  RW flow, RW turbidity, RW turbidity (lag 1 h), RW
turbidity (lag 2 h)

+ RWpH RWpH (lag 1 b

o CW turbidity, CW turbidity (lag 0.5 h), CW turbidity
(lag 1 h), CW turbidity (lag 2 h)

All of which were sampled at 5 min interval.

The most successful network mn predicting CW
turbidity m the wvalidation phase had a (10-10-1)
architecture with a Mean Absolute Error (MAE) of 4.5%
and a correlation coefficient, R of 0.15. The poor R was
mainly contributed by the 1 h time lag in the prediction.
When the prediction was time shifted forward by 1 L, the
MAE and the R? improved to 1.9 and 0.84%, respectively.

The next stage of the research was focused on the
removal of the time lag. Literature review shows that
MLP’s with 1 or 2 ludden layers are frequently used for
the water treatment application. Performance of networks
having 3 or more ludden layers 1s no different when
compared to networks having 1 or 2 hidden (de Villiers
and Barnard, 1992). Besides MLP’s, hybrid networks used
(Evans et al., 1998) where Kohonen self organising map
was combined with MLP. Combination of fuzzy logic and
neural networks like Adaptive Neural Fuzzy Inference
System (ANFIS) (Evan et af., 1998, Jang, 1993; Han ef af.,
1997), or a hybrid combination of simultaneous fuzzy and
neural control were also utilised.

Alum lime
polymer

Shidge
Disinfidetion
Chlorine
l——
Clear water tank

Data chosen as network mputs and required past
data mputs were also mvestigated (2, 3, 5, 6, 7, 10). Inputs
included RW turbidity, RW flow, RW temperature, RW
conductivity, RW alkalimty, RW apparent colour, RW real
colour, RW UV absorbitivity, polymer dosing and alum
dosmg. It was reported that the temperature 1s irrelevant
to the performance of the network in predicting water
colour (Fletcher et al, 2001). Sensitivity analysis was
done (Mirsepassi et al., 1995) to determine the minimum
critical number of past data required for prediction.
Through sensitivity analysis, it was found that the
raw water temperature and turbidity were the main
determinants in forecasting the Clarified Water Turbidity
(CWT) followed by alum dosage.

METHODOLOGY

Further enhancement for development of an artificial
neural network to predict CW turbidity is the main
objective of this paper. In particular, special attention was
focused on the removal of the one hour time lag in the
prediction encountered (Isidore et al., 2000). Therefore,
the objectives of the research project were as follows:

» To determine the effect of sampling on neural
network predictions.

»  Toexplore the different types of neural networks.

» To optimise the number of past data as network
mputs.

* To determine the effectiveness of the network in
predicting the difference between the present CWT
and the future CWT (i.e., ACWT).

Two main neural networks, a Multiple Layer
Perception (MLP) and an Elman network were chosen to
predict the clarified water turbidity. The MLP is a feed
forward network which was chosen for its ability to
predict the model. The Elman network is a recursive
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Fig. 2: Multiple layer perception architecture
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Fig. 3: Elman network architecture

network which was chosen for its ability to due to its
conflicting patterns (Skapura, 1996). Figure 2 and 3 show
the MLP and Elman network schematics, respectively.

Data from the Moyog water treatment plant database
were extracted at 1 h interval for effectiveness in
prediction comparison with data sampled every 5 min.

Lastly, the effects of the past number of data
mcluded in the inputs on the prediction error were
compared.

RESULTS AND DISCUSSION

Effect of sampling period: Both MLP and Elman networlk
were configured to (4 10 1) with mnputs of RW pH, RW
flow, RW turbidity and CW turbidity. The network was
trained to predict CW turbidity 1 h ahead to 500 epochs
with the Levenberg Marquardt (ILM) training algorithm.
The results of the tramming and validation with 5 min
sampled data and 1 h sampled data is shown in Table 1.
From Table 1, it can be seen that data sampled at 1 h
intervals improves the networks performance for the

Table 1: Effects of sampling on network prediction

Network/ Training Training Validation Validation
sampling MSE R? MSE R?

MLP (5 min) 0.017337 0.828546 0.064081 0.576920
Elman (5min)  0.017967 0.821630 0.039340 0.703456
MLP (1 h) 0.014976 0.847784 0.061514 0.721815
Elman (1 h) 0.008884 0.912777 0.034331 0.719274
Table 2: Effects of architecture on network prediction

Network/ Training Training Validation  Validation
architecture MSE R? MSE R?
MLP(5101) 0.033593 0.813318 0.045722 0.740173
Elman (5101) 0.033657 0.812924 0.038386 0.783863
MLP (520 1) 0.029683 0.837187 0.058717 0.680086
Elman (5201) 0.030321 0.833340 0.077029 0.611138
MLP(51051) 0.030028 0.835111 0.049119 0.733349
Elman (51035) 0.029746 0.836812 0.074830 0.639445
training and validation phase. In addition it was

observed that the Elman network performed slightly
better than the MLP.

Effect of network type and architecture: Both MLP and
Elman networks were configured with (5-10-1), (5-20-1)
and (5-10-5-1) architectures. The networks were trained for
the prediction of CW turbidity 2 h ahead using data
collected at 2 hintervals. The training was limited to 500
epochs since the training errors did not show any
improvements beyond that epoch. LM traiming algorithm
were utilised due to its rapid convergence during training.
The networlk inputs were RW pH, RW flow, CW turbidity,
RW turbidity and time (to correlate to temperature).
Training and validation results are shown in Table 2.

From Table 2, it can be seen that although the more
complex networks have better training, it is the simplest
network that provided the best prediction thus confirming
to the earlier findings (de Villiers and Barnard, 1992). The
difference in performance between the MLP and Elman
network is also marginal with the MLP performing better
with the simpler network. The time prediction lag was also
still present. A typical validation plot with time lags 1s
shown in Fig. 4.

Effect of past data: With 3 or 9 sets of past inputs were
included into the mput of both the MLP and the Elman
network as mentioned above. The architecture was set to
a single hidden layer with 10 nodes.

From Table 3, it can be seen that more past data does
not result in better predictions, although traming
improved, validation reduced for both networks. This is
most likely due to the fact that the retention time between
the chemical imection pomts to the pulsator’s effluent
was approximately 1.5 h. Parameters earlier than that
would have insignificant effect. Besides this, it was also
noticed that there was little difference between both
network performances.
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Table 3: Effects of past data on network prediction

Network/ Training Training Validation Validation
past inputs MSE R MSE R?
MLP (17 10 1)
3 past inputs 0.028303 0.845457 0.057262 0.684916
Elman (17 10 1)
3 past inputs 0.027001 0.853181 0.067661 0.660984
MLP (41 10 1)
9 past inputs 0.022505 0.879334 0.058059 0.674098
Elman (41 10 1)
9 past inputs 0.019321 0.897387 0.09899 0.545906
Table 4: Effectiveness in prediction of ACWT(2 h)
Network, Training Training Validation Validation
architecture MSE R? MSE R?
MLP (810 1) 0.051857 0.820835 0.101206 0.554470
Elman (810 1)  0.051637 0.805474 0.222293 0.489172
MLP(81051) 0.055552 0.810375 0.101204 0.619331
Elamn (8 10 51) 0.054793 0.812459 0.086852 0.630233
—— Actual data
0.31 ——— ANN prediction
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Fig. 4: Validation plot MLP (105 1)

Predicting ACWT: MLP and Elman type network were
utilised to predict ACWT (2 h) where,

ACWT(2h)=CWT(2 h) - CWT(Oh) 1)

Inputs to the network also includes the present
differences of RW pH and turbidity and ACWT (0 h) that
are defined as,

AX{(Oh) = X(0h) - X(-2h) )

The output of the network would then be used to
calculate CW'T by unnormalising ACWT (2 h) and adding
itto CWT (Oh). Then (8101) and (8 10 5 1) architectures
were used. Training and validation results are shown in
Table 4. It can be seen that double lidden layered ANN
(MLP and Elman) generally performs well compared to
their single hidden layered counterpart. The time lag
however was still observed. Over all MLP and Elman
networks performed similarly although the Elman networlk
required longer calculations.

CONCLUSIONS

The complexity of the process dynamics made
artificial neural networks highly suitable to predict
clarified water turbidity, a resultant of the coagulation
process. The Elman network showed no significant
difference when compared to MLP. In addition, Elman
network required more calculations due to the melusion of
the context umits. It was also demonstrated that the past
inputs played no major role m improving the networks
performances. Thus, future works would only make use of
data at n-th hour to predict CW turbidity at (n+1)-th hour
where n, T are positive integers.
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