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Abstract: This study introduces a new approach for decentralized scheduling in a parallel machine environment
based on the ant colonies optimization algorithm. The algorithim extends the use of the traveling salesman
problem for scheduling i one single machine, to a multiple machine problem. The results are presented using
simple and illustrative examples and show that the algorithm 1s able to optimize the different scheduling
problems. Using the same parameters, the completion time of the tasks is minimized and the processing time of

the parallel machines is balanced.
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INTRODUCTION

In the cumrent competitive market environment,
companies have to deliver the goods on the date
committed to the costumers, using the available resources
i1 the most efficient manner. To achieve these aims, an
optimized scheduling is required. The scheduling methods
proposed in the begmmng of last century by Henry Gantt,
have developed into very sophisticated algorithms,
focusing both on deterministic and on stochastic
systems. Today, analytical solutions for different
scheduling problems, as well as heuristic optimization
methods like Genetic Algorithms (Tofin, 2003), or market-
based-approaches?. However, there are still many topics,
both theoretical and practical, which have to be studied in
the near future (McKay ef al., 2001). One of these topics
is  the distributed scheduling in manufacturing.
Scheduling of large-scale processes with complex goals
and constrains can hardly be done using a centralized
scheduler. The decomposition of the problem distributed
by different interacting agents in the process, i.e.,
resources and tasks, can lead to an optimized solution
since every participating part contributes with information
and suggestions to the fmmal decision. This type of
distributed methodology is even more important since
the future scheduling policies will have to include online
and reactive rescheduling, m order to face different
phenomena like production breakdowns or changes in the
production planning, imposed by clients or by the market.
In a distributed scheduling problem, the number of agents

involved and the quantity of information that has to be
exchanged is very large. Multi-agent algorithms based on
social insects, can avold this complexity. Social insects,
e.g., amts, have captured the attention of scientists
because of the high structuration level that the colonies
can achieve, especially when compared to the relative
simplicity of the mdividuals. Artificial ants are presented
1in detail by Marco ef al. (1996), as the result of preliminary
worlks, where ants were used to solve different types of
NP-hard problems. Robertino and Chenk (2004) and
Cicirello and Smith (2001), have proposed the application
of the ant colonies algorithm to solve the job shop floor
problem. Here, we propose a new approach for
decentralized scheduling in a parallel machine
enviromment.

SCHEDULING IN A PARALLEL
MACHINE MODEL (PMM)

In many manufacturing and assembly facilities, every
job can be processed in the same type of machines. This
kind of environment, where the machines are set up in
parallel 15 usually referred to as parallel machines
environment (Pmedo and Chao, 2002). The study of this
environment, is very important from both a theoretical and
a practical point of view: the occurrence of resources in
parallel is common m the real world, e.g., in the flexible
flow shop configurations and the techmques used for
machines in parallel are often used in decomposition
procedures for multistage systems.
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Fig. 1: The parallel machine environment

Modeling the system: Let the number of jobs be denoted
by n, where the index j refers to a job and a number of
machines in parallel by m, where the index o refers to the
machines. Each job j as to be processed at one of the
machines o and any machine can do it. Figure 1 shows the
general representation of this environment. Each machine
has a setup time sij, an interval of time used to take out
the last job 1, put in the new job j and to change the
parameters of the machine if the new job is different from
the last one. The processing time poj is the time required
by machine o to process the job j. If a list of the n jobs to
be executed is known before each production shift, the
problem is deterministic. The n jobs can be divided into
families and each family divided into types.

Then, each type has to be produced in a certain
quantity. The division into families and types is
necessary, for example, when the setup times vary from
family to family, but the processing times vary from type
to type. The objective to be minimized in a scheduling
problem 1s always a function of the completion times of
the jobs j in the machines o. This completion time is
denoted by Coj or simply Cj when we talk about the
completion time of the job j on the last machine. The most
common objective functions in this problem are: make
span Cmax-it is the completion time of the last job to leave
the system. It is defined as the max (C1;: :: ;Cn); lateness
Ij - Every job j as a due date 1j, the date the job is
promised to the client. The lateness of the job is defined
as Lj = Cj - iy which 1s positive when the job j is delivered
late and negative when it is completed early. The maximum

measures the worst violation of due dates. The
scheduling in parallel machines can be seen as a two-step
process: one has to determine which jobs are allocated to
each machie and then, the sequence of the jobs allocated
to each machine.

Scheduling optimization using the traveling salesman
problem: The system described previously, can be
represented by the triplet Pm||sij||Cmax, which tell us in
a compact form that the environment i1s a parallel
machine shop with m identical machines (Pm), with setup
times in the machines that depend on the job (called
sequence dependent setup-times si)) and where the
function to minimize is the make span Cmax. This machine
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Fig. 2: The TSP in scheduling

Table 1: Setup time from job i to job j

Sij 0 1 2 3
0 0 4 3 5
1 1 0 2 4
2 2 2 0 3
3 2 2 1 0

envirormment 1s highly complex. The problem withm = 2 15
already a NP-hard problem. Michael (2002) presents a
general survey of heuristics to solve this problem, which
15 of comsiderable interest to mdustry. In this study we
propose as new heuristic, the extension of the Traveling
Salesman Problem (TSP), used to find the optimal
scheduling of the make span problem with sequence-
dependent setup times for the case of one machine only
{(Gilmore and Gomory, 1964). In the next sections, we
describe the TSP algorithm applied to one machine and
then the extension to a multi-machine environment. The
TSP 1s a classical optimization problem, where there are n
cittes that have to be wvisited by a salesman. The
salesman’s objective is to visit all the cities using the
shortest or the fastest possible way. To solve the
scheduling problem, an analogy between the cities and
the n jobs 13 done, where the distance between the cities
are the setup-times between the jobs. One extra city can
be mcluded, which 1s city 0, that corresponds to the maitial
state of the machine. The path between cities i and j, is in
fact the setup-time s1j of the machine to change from the
jobitothe job j. Figure 2 and Table 1 present an example
for n = 3. The production time 18 not relevant i the case
of only one machine, even if it is different for each job,
since at the end, all jobs will be produced at that machine.
In this case, the optimal solution is O- 1- 2- 3- 0 with the
make span time of

C.. =9+ 3P

The parallel machine model with TSP. We propose that
the parallel machine problem is seen as a multidimensional
TSP with m different dimensions. The jobs are once
again the cities
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Fig. 3: The multiple TSP
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and each machine 1s a salesman. From the n different jobs,
m jobs are randomly allocated to the m machines. Then,
for the machine that finishes first a j job, the algorithm
chooses the next job to assign from the remaining n-m
jobs still to be processed. The second machme to fimsh
a job, has then to choose among the remaining n-m-1 jobs
still to execute and so one. At the end of the optimization
algorithm, each machine o has its own subset no of jobs
of the total n = nl +n2 +: : : + 1, jobs and has to operate
this subset in a way that mimmizes the production time.
Thus, the TSP not only finds the shortest path between
the cities, but it also finds which cities have to be visited
by each salesman. One example presenting the algorithm
schematically is depicted m Fig. 3. Imagime that there are
two machines o = 1 and o = 2 and n = 9 jobs to be
processed. The machines can have different processing
times. The mtial stage 1s not considered here. Image that
at the beginmng, jobs j = 1 and j = 5 are assigned to
machines o =1 and o = 2, respectively. The machines start
the production and machine o = 1 finishes the job first.
Then, it can receive a job from the remaining set [2; 3; 4;
6; 7, 8; 9]. The next job assigned to machme o =1 1s job
j = 2. Meanwhile, machine o = 2 ends the first job and can
receive a job from the set [3; 4; 6, 7, 8, 9]. Jobj =4 is
assigned and while 1t produces this new job, jobj =3 1s
assigned to machine o = 1 from the set [3; 6; 7; 8; 9].
Maybe this machine is able to finish job j = 3 before job
j = 4 is finished in machine o = 2, so machine o = 1
recelves job j = 7 and machine o = 2 receives the job ] = 6.
Fmally, the last jobs [8; 9] are assigned to machines o = 2
and o = 1, respectively. Note that in this case, the
production time is relevant for the solution. The TSP
problem 1s one of the most studied optimization problems.
There are several different analytical methods and
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heuristics to solve the problem. However, in this particular
case, we have to find not only the best solution to each
machine, but also to cluster the orders in the different
subsets. This dynamic effect 1s difficult to integrate in the
classical algorithms that solve the TSP. Thus, a
distributed optimization algorithm is more suitable to
solve this problem than a classical method. Next section
introduces the ant colonies distributed optimization
algorithm to solve this multiple TSP framework.

SCHEDULING USING SNT COLONIES

Ants are social insects. They live in colonies and all
their actions are towards the survival of the colony as a
whole, rather than the benefit of a single ndividual of the
society. The individual ants have no special abilities.
They communicate between each other using chemical
substances, the pheromones. This indirect
Communication allows the entire colony to perform
complex tasks, such as establishing the shortest
route Paths from their nests to feeding sources. In
(Marco et al, 1996) an optimization algorithm was
proposed that tries to mimic the foraging behavior of real
ants, 1.e. the behavior of wandering in the search for food.
This algorithm has already been successfully used to
solve the TSP (Maria and Dorigo, 1996) and other NP
hard optimization problems (Silva et al, 2002). The
next subsections describe the ant colomes algorithm
and a new application in scheduling of production
systems.

General description of the ant colonies algorithm: When
an ant is searching for the nearest food source and comes
across with several possible trails, it tends to choose the
trail with the largest concentration of pheromone T, with
a certain probability p. After choosing the trail, it
deposits a certain quantity of pheromone, increasing the
concentration of pheromones in this trail. The ants return
to the nest using always the same path, depositing
another portion of pheromone in the way back. Imagine
then, that two ants at the same location choose two
different trails at the same time. The pheromone
concentration on the shortest way will mcrease faster
than the other: the ant that chooses this way, will deposit
more pheromones in a smaller period of time, because it
returns earlier. If a whole colony of thousands of ants
follows this behavier, scon the concentration of
pheromone n the shortest path will be much higher than
the concentration in other paths. Then the probability of
choosing any other way will be very small and only very
few ants among the colony will fail to follow the shortest
path There 1s another phenomenon related with the
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pheromone concentration. Since it is a chemical
substance, it tends to evaporate in the air, so the
concentration of pheromones vanishes along the time. In
this way, the concentration of the less used paths will be
much lower than that on the most used ones, not only
because the concentration increases in the other paths,
but also because their own concentration decreases. In
general, the ant colony behavior can be described
formally using the following mathematical framework. et
the nest and the food source be connected by several
different paths, connecting n intermediate nodes. The ant
k in node 1 chooses one of the possible trails (1; j)
connecting the actual node to one of other possible
positions j € [1,.....n], with probability pij*= f (t;)

y = f(z,)

where T, is the pheromone concentration on the path
comnecting 1 to j, in the way to the food source. The
pheromone 1n this trail will vary in time accordmng to:

L D=0 p+8f
where 8, is the pheromone released by the ant k on the
trail (i; ) and p € [0,1]
is the evaporation coefficient. The system is continuous,
so the time acts as the performance index, smce the
shortest paths will have the pheromone concentration
increased in a shorter period of time. This is the
mathematical description of a real colony of ants.
However, the artificial ants that mimic thns behavior can be
uploaded with more characteristics, e.g. memory and
ability to see. Tf the pheromone expresses the experience
of the colony in the job of finding the shortest path,
memory and ability to see, express useful knowledge
about the problem the ants are solving. In this way, (1)
can be extended to: where mjij is a visibility function and
I' is a tabu list. In this case, the visibility expresses the
capability of seeing which 1s the nearest node j to travel
towards the food source. I' 1s a list that contains all the
trails that the ant has already passed and must not be
chosen again (artificial ants can go back before achieving
the food source). This acts as the memory of an ant. If the
TSP 1s the problem to be solved, the visibility function
can be the inverse of the distance from city i to city j
expressed in a matrix dij. Then njij = 1/dij and the tabu list
T" 1s the list of cities that the ant has already visited. The
parameters ¢ and [ express the relative weight between
the importance of pheromone concentration I' and the
visibility . Finally, each ant deposits a pheromone 8, on
the chosen trail: 8 =T..... (4) where I'c is a constant. In
the artificial ants” framework, Eq. 2 is not sufficient to
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mimic the increasing pheromone concentration in the
shortest path. With real ants, time acts as a performance
index, but the artificial ants use all the same time to
perform the task, whether they choose a short path or not.
For the artificial ants, it is the length 1 of the paths they
have passed that will determine if the solution is good or
not. Thus the best solution should increase even more the
pheromone concentration on the shortest trail. To do so,
(2) is changed to:

Tijt+n) = Tij(0* p + ATij (5)

where Atij are pheromones deposited in the trails (1; j)
followed by all the g
ants, Atij = ZX8ij * * [(1/2k) (6) and zk 1s the
performance index. In the TSP case the zk can be the
length 1, = Xdij of the path chosen by the k ant. Tn this
way, the global update is biased by the solution found by
each individual ant. The paths followed by the ants that
achieved the shortest paths have their pheromone
concentration increased.

Notice that the time interval taken by the q ants to do
a complete tour 18 t+n iterations. A tour is a complete
route between the nest and the food source and an
iteration is a step from i to j done by all the ants. The
algorithm runs Nmax times, where in every Nth tour, a new
ant colony 18 released. The total number of iterations 1s
Nmax*n. The general algorithm for the ant colomes is
described in Fig. 4.

Ants in the scheduling: To apply the ant colomes in the
scheduling of a production system, we use the same
mathematical framework described in the previous section.
The definition of the matrices for this particular problem
15: (1) The matrix dy is not the distance between the
towns. When there are no sequence dependent setup-
times, matrix dij is given by dij = pj; Vi<n. When there are
sequence dependent setup-times, the matrix dij is given
by dij = sy + pj; Vi<n. Since there exists m machines, there
are m matrices doi, which are the setup times and
processing times in each machine o. All the m matrices are
equal if the machines are identical. (2) There exist also m
matrices no1) = 1 doy and m matrices Toi). The tabu lists Tk
for each ant k will now be a matrix with dimension (n*m),
keeping the information about the jobs already executed
and the machine o where they were executed. (3) The cost
function z 1s now the make span Cmax. The algorithm 15
the one presented in Fig. 4, except for the fact that in
every iteration n, the ant k has to switch between the m
machines, which means, it has to see what will be the next
machine o to be available and then choose the next order
using the matrices 1oy and Toy).
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Inmitialization:
Set for every paire (i,j): T;, =T,
SetN =1 and define a N,_,
place the q ants

Build a complete tour
Fori=1ton
Fork=1toq
Choose the nextnode using p', = (3)
Update locally T, (t) using (4)
Update the tabu list T

Amnalyze solutions

Fork=1tog
Computer performance index z = (lk)
Update globally T, {t-n) using (5)

Fig. 4: Ant colonies optimization algorithm
SIMULATION RESULTS

The simplest case that can be considered is the
P2|Cmax, which is the problem of two machines in parallel
(P2), with no sequence depending setup times, where the
cost function is the make span Cmax. This problem 1s of
mnterest because mimmizing the make span has the effect
of balancing the load over the various machines, which is
an important objective in practice. During the last couple
of decades, many heuristics have been developed for this
NP-hard problem. One of the heuristics 15 the Longest
Processing Time first (LPT) rule (Graham, 1969), that
assigns at t = 0 the largest jobs to the machines. After
that, whenever a machine 1s free, the longest job among
those not yet processed 1s put on the machine. This
heuristic tries to place the shortest jobs toward the end of
the schedule, where they can be used for balancing the
loads. This heuristic 15 very useful to measure the
performance of other heuristics, smce it 13 possible to
define a bound relative to an optimal possibly
unknown schedule Cmax (OPT), based on Theorem 1
(Michael, 2002).

Theorem 1. For Pm|Cmax, Cmax (LPT)YCmax (OPT)
< 4/3-1/3 m: The theorem states that is possible to define
a minimal bound for the make span Cmax (OPT) of an
optimal scheduling, based on the make span Cmax (LPT)
defined by the LPT scheduling and on the number of
machines m in parallel. Bxample 1 - No sequence
dependent setup-times The first example here analyzed is
the case of n = 9 jobs, processed by m = 2 identical
machines 1 parallel, whose processmng tiumes are
represented in Table 2. The LPT rule here will have a make
span of 26, corresponding to the sequences 0=1; 13—
5 7= 9and o =2; 2= 4= 6— 8 Using Theorem 1, it 1s
possible to prove that Cmax(OPT) 23. Using the ant
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Table 2: Processing time of job j in machine o

Job 1 2 3 4 5 6 7 8 9
Poj 7 7 3] 3] 5 5 4 4 4
Table 3: Setup time from job i to j in machine o

8. 1 2 3 4 3 6 7 8 9

1 0 1 2 2 2 2 2 2 2

2 1 0 2 2 2 2 2 2 2

3 2 2 0 1 2 2 2 2 2

4 2 2 1 0 2 2 2 2 2

5 2 2 2 2 0 1 2 2 2

6 2 2 2 2 1 0 2 2 2

7 2 2 2 2 2 2 0 1 1

8 2 2 2 2 2 2 1 0 1

9 2 2 2 2 2 2 1 1 0

algorithm described in section 3, with the parameters
q=9 a=1 p=2,p=0:9 1t0=0:001 tuned using a
trial and error approach, the solution is given by the
following sequences: 0 =1, 9=+ 8> 5> 4= 6ando = 2;
1—7— 3— 2, which have a make span of 24. Tt is proven
that the ant algorithm is able to find an optimized
solution, where both machines are equally balanced
{(Cmax (o = 1) = max (o = 2) = 24). Example 2-Sequence
dependent setup-times. The previous example is trivial,
since the setup-times are not considered. If the problem
being studied is P2|sij|Cmax (the same problem of the
Example 1, but where there exists sequence depending
setup times), then the complexity of the problem increases
severely. Let us consider the scenario where there are n =
9 different jobs grouped into 4 different families, which
have one common characteristic. The shop has the same
2 machines. The production time for each job is the same
has described in Table 2, grouped in four families: family
A(G=1,2),family B (j = 3; 4), family C (j = 5; 6) and family
D (j="7;8;9). The setup-time in each machine depends on
if the family changes or not. The setup time is 1 minute if
the new job type belongs to the same family and 2 min if
it belongs to a different family. The setup time’s matrices
so1] are represented mn Table 3. The LPT rule originates a
make span of 32, since the resulting sequences are the
same as 1n Example 1, plus the setup-times. Note however,
that Theorem 1 does not stand anymore for this
application. To apply the ants algorithm, with the same
parameters used in the previous example, we have to
add the matrices so1) to the prior matrices doy. In this
case, the ants propose the following sequences: o=1; 7—
8=+ 9—4->3ando=2; 52> 6= 1= 2. The make span is
29 (Cmax (o= 1) = Cmax (o= 2) = 29) and once again, both
machines are balanced.

CONCLUSIONS AND FUTURE WORK

This paper presents a new algorithm to optimize the
scheduling in a parallel machine- manufacturing
environment. This algorithm has two features: first it
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extends the optimization of a single machine problem to a
parallel machine environment using the TSP and
secondly, it uses the ant colonies optimization algorithm
to find a solution for this new problem. The ant algorithm
explores both the knowledge and the experience of
mndependent agents m the search for the best solution.
The ants are able to communicate between each other by
means of pheromones, which have embedded the results
of prior attempts from other ants, enabling the
convergence to an optimal solution. The examples solved
in this paper showed that the algorithm is extremely
versatile. Changes m the environment are easily
mtroduced in a single matrix. In this way, in a production
system managed by this algorithm, changes mn the
manufacturing processes do not imply a change in the
scheduling method. Usually, when the environments
conditions change, the scheduling method has to change
also, since the schedulers are usually develop for a single
problem. As the next step, we will extend the algorithm to
the flow shop problem, a serial sequence of parallel
machines problem.
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