Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 7 (16): 2226-2240, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

Logical Graphics Design Technique for Drawing Distribution Networks

Mansoor Al-a’Ali
Department of Computer Science, University of Bahrain, P.O. Box 32038, Bahrain

Abstract: Electricity distribution networks normally consist of tens of primary feeders, thousands of
substations and switching stations spread over large geographical areas and thus require a complex system
i order to manage them properly from within the distribution control centre. We show techniques for using
Delphi Object Oriented components to automatically generate, display and manage graphically and logically
the circuits of the networle. The graphics components are dynamically interactive and thus the system allows
switching operations as well as displays. The object oriented approach was developed to replace an older
system, which used Microstation with MDL as the programming language and ORACLE as the DBMS. Before
this, the circuits could only be displayed schematically, which has many inherent problems in speed and
readability of large displays. Schematic graphics displays were cumbersome when adding or deleting stations;
this problem 1s now reselved using our approach by logically generating the graphics from the database
connectivity information. This paper demonstrates the method of designing these Object Oriented components
and how they can be used in specially created algorithms to generate the necessary interactive graphics. Four
different logical display algorithms were created and in this study we present samples of the four different
outputs of these algorithms winch prove that distribution engineers can work with logical display of the circuits
which are aimed to speed up the switching operations and for better clarity of the display.

Key words: Electricity distribution network, distribution control center, schematic display, display algorithms,

Delphi components

INTRODUCTION

Electricity Distribution Systems distribute electricity
to a wide variety of customers such as homes, factories,
hospitals, hotels, etc. This 15 achieved through a set of
complex circuits spreading all over a town or a country
feeding ndividual substations. Each substation feeds a
specific area or a specific hospital or any consumer of
electricity. Distribution control engineers are responsible
for the distribution control and take a variety of actions to
ensure that the distribution is maintained. They achieve
this by having a system which enables them to keep track
of the flow of electricity, the live and dead circuits, the
isolated stations, the on and off switches, etc. Any
switching to on or to off of any switch has an impact on
the flow of electricity and must be counteracted to make
sure that supply 1s mamtained. Control engineers manage
such interrelated tasks by having a supporting computer
system to keep track of the flow and the status of the
circuits and stations. For example, 1f the engineer wants to
1solate a station for mantenance he would reroute
electricity from some other source and these actions are
registered in the system for monitoring and control.

Current computer systems for managing control
centre operations are based on user drawn schematic
diagrams coupled with a database to enable the engineer

to implement the operations and to keep track of all the
vents taking place by other engineers. These systems
suffer from serious drawbacks in terms of speed efficiency
and display clarity. Smce the system 1s dealing with
graphics drawn using a package such as AutoCAD or
Microstation and processed by another application
system written say in C and the data is stored m a
database system such as ORACLE; this takes more time
than acceptable to the engmeer and some switching
operations may take minutes. This speed problem may
endanger the filed workers and may cause the supply to
be cut off from consumers for many minutes. Another
drawback to schematic diagrams is that they are difficult
to trace because substations are manually squeezed
inside empty slots of the diagram and slowly the diagram
becomes unreadable. In some cases the engineers may
insert a substation far away from where 1t should be
because there is no space to insert next to the substation
feeding it. Therefore, if the engineer wants to trace a
circuit he may find imself spanning for long period and
by then he would have forgotten where he came from.
We have devised a logical approach to storing,
drawing and tracing circuits whereby the engineer does
not have to mamually msert the graphics and other details
of a substation, but mstead, he only needs to inter
information in the database and the graphics are logically

2226

J. Applied Sci., 7 (16): 2226-2240, 2007

generated. Our approach allows the user to carry out
operations such as putting a switch to off or isolating a
station or 1solating a cable and the result of this action 1s
a logically generated circuit graphics through appropriate
algorithms, (Fig 16 and 17). These logically generated
circuit diagrams are well organized and the spacing is
cleverly generated to occupy the mimmum space which
makes tracing a simple, accurate and fast task. Circuits
now do not spread over many screens and require a lot of
scrolling to trace. Therefore, our logical approach resolves
the two main drawbacks of schematic diagrams which are
speed and space.

We have conducted a number of studies on the
issues relating to the problems of the system at the
minmstry of electricity distribution control centre at
UmFElhasam, Bahrain (Al-A'ali, 1999, 2006). These studies
were mainly focused at speed and display problems.

Research on automating the Electricity Distribution
Control Centers and their activities of monitoring and
controlling electricity distribution networks has received
some attention in the research literature (Pitrone, 2006,
Baxevanos and Labridis, 2007, Mamjunath and Mohan,
2007). Most of the research is focused on post fault
reconfiguration (Kashem et af., 2000, Ming-Yang et af.,
2005, Carvalho et al., 2006). However, no research was
directed to the issue of the speed of displaying the
graphical distribution of the network which will enable the
control engineer to visually study the situation and take
the appropriate action. Most of the systems available are
simple schematic displays.

Claviyjo et al. (2001) describe a distributed system
based on CORBA technology to provide real-time visual
feedback to operators of large supervision systems, but
no attention was given to the issue of speed or the quality
of graphics display of the circuits. Carvalho et al. (2006)
proposed an approach to operational planmng and
expansion planning of large-scale distribution systems.

Herrell and Bekar (1998) proposed a method of
modeling of distribution systems in PCS. Yeh and Tram
(1997) present an integrated solution for computerized
distribution plannming i a Geographic Information System
(GIS) context, a synergy that magnifies the data
accessibility between load forecasting and feeder
planning tools, sealing the traditional gap between long-
term and short-term distribution system planmng.
According to these authors, this approach enables the
distribution system studies in a GIS context, to best assist
utility planners m deciding where and when the customers
will grow and how to expand the system facilities to meet
the demand growth. Wainwright (1997) present a

Distribution Engineering Geographical Information
System as a major program of network information data
capture at all voltage levels from the customer service
cable right through to the primary supply in-feed; a suite
of software for viewing the data in the office and in the
field; tools for network optimization and a range of
automation and mformation processing systems which
assist in the operation and maintenance of the distribution
network.

Yeh and Tram (1997) present an mtegrated solution
for computerized distribution planmng in a Geographic
Information System (GIS) context, a synergy that
magnifies the data accessibility between load forecasting
and feeder planning tools, sealing the traditional gap
between long-term and short-term distribution system
planning. According to these authors, this approach
enables the multi-year distribution system studies in a GIS
context, to best assist utility planners in deciding where
and when the customers will grow and how to expand the
system facilities to meet the demand growth. Wainwright
(1997) presents a distribution engineering geographical
information system as a major program of network
information data capture at all voltage levels from the
customer service cable right through to the primary
supply in-feed, a suite of software for viewing the data in
the office and m the field; tools for network optimization;
and a range of automation and information processing
systems which assist in the operation and maintenance of
the distribution network. Lestan and Gorisek (1997)
present a form of a distribution network automation utility
experience. Gorisek (1997) discussed some of their
experience with the automation of distribution network
utility. Ti et al. (1999) propose an algorithm and
implementation of an mcident based connectivity trace
system for distribution network. Carvalho et al. (1999)
proposed an approach to operational planning and
expansion planning of large-scale distribution systems.

Some studies were conducted on the issues relating
to the problems speed efficiency of displaying
distribution networks (Al-A'ali, 1999, 2006). After
thoroughly searching the literature, we have found no
other reported attempts to present some solutions to the
issue of speed problems of distribution control systems.
We have found no published work about the problems
and methods of display of the distribution network.
Therefore, the approach presented m this study and in
other studies by the author represents a new direction
mnto the way electricity distribution systems can be
managed by the engineers from control centres mn a logical
way which makes the switclhing operations easy and
quick to do.

2227

J. Applied Sci., 7 (16): 2226-2240, 2007

This research presents the technical aspect of these
logically generated circuit diagrams through the use of
Object Oriented technique of the Delphi development
platform. To our knowledge there is no reported research
on the 1ssue of logically generating electricity distribution
networks except those by the author (Al-A'ali, 1998, Al-
Al'ali, 2006). This paper shows in a step by step way how
the graphics of the distribution network can be generated
as components of Delphi. These components are then
organized in a logical display from the comnectivity
information stored in the database.

ELECTRICITY DISTRIBUTION SYSTEMS

An Electrical Distribution Network System 15 a
collection of electrical circuits consisting of primary
stations and substations linked via cables. Stations are
linked to each other through switches, which are fixed in
the stations. Every station may contain one or more
switches and has one or more bus-bars, where every bus-
bar can be considered as a station by itself. Switches are
directly linked to cables. Primary stations are the sources
that feed other stations, except in some rare situations
(parallel comnections). Substations are the stations that
are fed by primary stations. Switches on primary stations
are called circuit breakers. All connecting stations linked
to a circuit breaker represent an electrical circuit. Electrical
circuits form the Electrical Distribution Networl: (Fig. 1).

Electricity distribution networks normally consist of
thousands of primary stations (feeders), substations and
switching stations spread over large geographical areas
and thus require a complex system in order to manage
them properly in the control center and in the field.
However, electricity network circuits which are part of the
overall network, can sometimes be spread over large
geographical areas and the control engmeer can either
zoom in or zoom out on these circuits which normally
makes the circuits either unreadable, in the case of
zooming out, or only one part 1s readable in the case of
Zooming in.

The normal tasks of a distribution control centre
engineer are based on a large schematic display of the
network (Fig. 2), which may comprise tens of thousands
of stations, switching stations and supply stations
(primaries). Previous distribution network was digitized
using Microstation. These networks then
programmed to carry out many of the control centre

WEre

operations such as adding new stations, retiring old
stations, tracing the flow of a given circuit, isolating a
station for maintenance, isolating a complete circuit for

Station] 6 Switch
)] —— Busbar
—_— Cable

Station 2
i

Fig. 1: The components of a circuit

maintenance, redirecting the flow of electricity, etc. These
operations require decision making capabilities which can
be provided either by the engineer at the control centre or
by the
interconnected and the engineer can zoom in or zoom out
to identify the particular circuit or station of interest. But

system. The distribution network is all

once the engineer zoomed in or out on a given area of the
display, he would be faced with a manually drawn network
which would have grown over the years and would have
no logical display pattern and thus difficult to follow
which would in turn either slow or hinder the decision
making process. Since the control centre engineer would
normally be working on more than one region or circuit
and controlling a number of teams out there in the field, he
would find the illogical schematic display of great
hindrance. The sample networl shown in Fig. 2 was taken
from the Distribution Control Centre at UmElhasam in
Bahrain, which was drawn using Microstation and
programmed using MDL tool and ORACLE as the
database. Microstation contains the coordinates of each
object in the network such as switches, bus-bars and
cables, whilst ORACLE keeps information about the
connectivity of the circuits and the status of each station
or circuit if 1t 15 on or off and the direction of flow of
electricity. The ORACLE-Microstation schematic display
system known as EDMS, suffered from two main
problems: 1) a very large confusing schematic display
comprising over ten thousand stations and 2) speed
problems where one circuit may sometimes take up to
two minutes to display because of the architecture of
the system which was based on an ORACLE
database coupled with Microstation and MDIL through an
ODBC.

These momtoring and control activities
distribution control centre include switching the flow from

of a

on to off and vv, preparing switching plans such as
those required for isolating stations or circuits for
maintenance, adding and removing substations, ete. All
these activities and more have been incorporated in the
Hi-Tech EDMS system.

2228

J. Applied Sci., 7 (16): 2226-2240, 2007

001

103 102 101 118

138 137 136

0¢ 90 90

14 145
e -

143 144

% %

Fig. 2: A sample of a schematic distribution network digitised manually using Microstation

GENERATING CIRCUIT GRAPHICS COMPONENTS

In this project, various components were created in
Delphi, each representing a different device in the
network. These components are Switches, Cables, Bus-
bars and Stations, all of type TGraphic. A station 1s
constructed of five switches and one or more bus-bars.
Cables link stations to each other.

As an example, one of the components created in the
project will be illustrated in details. The others follow the
same technique, except for the station component that
needs some additional features and procedures that will
be discussed laters. Figure 1 shows the different elements
of the network that were created as new components in
this project.

The graphic component presented in this chapter is
TS, that 1s, the switch component.
Creating a graphic component requires three steps:

¢ Creating and registering the component
* Publishing mherited properties
* Adding graphic capabilities

Creating and registering the component: The following
general procedure for creating a new component was

followed:

+ A new unit is created and called Oswitch.
* A new component type 1s derived and called T3S,
descended from TGrphicControl.

2229

J. Applied Sci., 7 (16): 2226-2240, 2007

s TS is registered on the Samples page of the
component palette.

Figure 3 shows the component Switch
The resulting code looks like listing 1:

<=Listing 1

unit Oswitch

interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms;
type

TS = class(TGraphicControl)

end;
procedure Register;
implementation
procedure Register,
begin

RegisterComponent(‘ Samples’, [TS]);
end;

i

end.

Publishing inherited properties: Once you derive a
component type, you can decide which of the properties
and events declared in the protected parts of the ancestor
type you want to make available to the users of the
component. TGrphicControl already publishes all the
properties that enable the component to function as a
control; all you need to publish is the ability to respond
to mouse event.

For the T'S control, one property 1s needed only:

type
TS = class(TGraphicControl)
published
propertyOnClick;
end;
The switch control now makes the On click interaction
available to the users.
Other properties are also needed such as,

published
property Hint;
property ShowHint;
property Visible;
property PopUpMenu,

Adding graphic capabilities: Once the graphic component
is declared and any inherited properties are published,
graphic capabilities can be added to distinguish between
components.

O

Fig. 3: The compenent switch

Two steps are always performed when creating a graphic
control:

¢ Determining what to draw
+ Drawing the component image

Determining what to draw: A graphic control generally
has the ability to change its appearance to reflect either a
dynamic condition or a user-specified condition or both.
In general, the appearance of a graphic control depends
on some combinations of its properties. To give the
shape, control a property to determine the shape it draws,
add a property called TstatusType which requires three
steps:

¢ Declaring the property type
¢ Declaring the property
+ Writing the implementation method

Declaring the property type: For the switch state, an
enumerated type is needed to show the color and repaint
the switch in its new state. The following type definition
is added above the TS control object’s declaration:

type
TstatusType = (stOn, stOff, stEarth);
Tstatus Type = class(TGraphicControl)

Declaring the property: To declare a property, usually a
private field is used to store the data for the property and
then methods for reading and/or writing the property
value are declared too.

For the TS control, a field that holds the current
shape must be declared and then a property that reads
that field and writes through a method call is declared.
The following declarations are added to TS:

type
TS = class(TGraphicControl)
private
FStatus : TStatusType;
procedure SetStatus(Value : TstatusType);
published
property status : T Status Type read FStatus write
SetStatus default stOn;
end

2230

J. Applied Sci., 7 (16): 2226-2240, 2007

Writing the implementation method: When either the
read or write part of a property definition using a method
call mstead of directly accessing the stored property data,
you mneed to iunplement these methods. The
implementation of the SetStatus method is added to the
implementation part of the unit:

procedure TS.SetStatus(Value :TstatusType);
begin
if FStatus <= Value then
begin
Fstatus := Value;
case FStatus of
StOn : Brush.color := clWhite;
StOIf : Brush.coler := FOffColor;
end,
Invalidate;
end;

end;

Figure 4 shows the switch status in both cases, on
and off. By default, the switch takes the on status, but
when the user changes its value mn the object mspector,
1t repaints itself in black to represent the off status. Other
variables declared in the same way as FStatus are as
follows:

type
TS = class(TgraphicControl)
private

FlastColor : TColor;
Fselected : Boolean,
Fpen: TPen;
Fbrush: TBrush;
Fecode : String;
FSTationCode : String;
FbusCode : String;
FoffColor : TColor;
FstationType : TSTation;
procedure SetOffColor (Value : TColor),
procedure SetCode(Value : String);
procedure SetStationCode(Value : String);
procedure SetBusCode(Value : String);
procedure SetStationType(Value : TStation);
procedure SetSelected(Value : Boolean),
public
property Selected : Boolean read FSelected write
setSelected default False;
property Code : String read FCode write SetCode;
property StationCode : String read FStationCode
write setStationCode;
property BusCode : String read FBusCode write

On switch Off switch

Fig. 4: Switch on/off status

SetBusCode;
published

property off Color : TColor read FOffColor write
setOffColor;
end;
Overriding the constructor and the destructor: In order
to change the default property values and imtialize owned
objects for the component, the inherited constructor and
destructor must be overridden.

Changing default property values: In this example the
switch control sets size to a rectangle with a height of 20
and width equal to 10 pixels. Tt is done as follows:

type
TS = class(TGraphicControl)
public
constructor Create(AOwner : TComponent);
override;
end;

5

» The height and width properties are redeclared with
their new default values, see code below.
type
TS = class(TGraphicControl)
published
property Height default 20
property width default 10,
end;
¢ The new constructor in the implementation part of
the unit looks like this:
constructor TS.Create(AOwner: TComponent);

begin
inherited Create(AQwner),
Height :=20;
Width :=10;

end;

5

2231

J. Applied Sci., 7 (16): 2226-2240, 2007

Publishing the pen and brush: By default, the canvas has
a thin, black pen and a solid, white brush. To enable
developers using the shape control to change those
aspects of the canvas, objects must be provided for them
to mampulate at design time, then copy those objects into
the canvas when painting. Objects such as an auxiliary
pen or brush are called owned objects because the
component owns them and is responsible for creating and
destroying them. Managing owned objects requires three
steps:

+ Declaring the object fields
¢ Declaring the access properties
* Imitializing owned objects

Declaring the object fields: For each object owned by a
component, it must have an object field declared for it in
the component. The field ensures that the component
always has a pointer to the owned object so it can destroy
the object before destroymng itself. In general, a
component initializes owned objects in its constructor and
destroys them in its destructor. Fields for pen and brush
objects to the TS control are added:

type
T3 = class(TGraphicControl)
private
Fpen: TPen;
Fbrush : TBrush;
end;

]

Declaring the access properties: You can provide access
to the owned objects of a component by declaring
properties of the type of the objects. That gives
developers using the component a way to access the
objects either at design time or at run time. Tn general the
read part of the property just references the object field,
but the write part calls a method that enables the
component to react to changes in the owned object.

The following lines are added to the code :

type
TS = class(TGraphicControl)
private
procedure SetBrush(Value : TBrush);
procedure SetPen(Value : TPen),
published
property Brush : TBrush read Fbrush write
SetBrush;
property Pen : Tpen read Fpen write SetPery;
end;
Then SetBrush and SetPen are written in the
implementation part of the unit:

4= 10 >

—n—p

410 >

S

Fig. 5: The boundaries of the switch component

procedure TS.SetBrush{Value : TBrush),
begin

FBrush Assign(Value);
end;
procedure TS. SetPen(Value : TPen);
begin

FPen. Assign(Value),
end;
Initializing owned objects: If vou add objects to vour
component, the component’s constructor must 1nitialize
those objects so that the user can interact with the
objects at run time. Similarly, the component’s destructor
must also destroy the owned objects before destroying
the component itself.
Steps are as follows:

¢ Constructing the pen and brush to the switch control
constructor:

constructor TS.Create(AOwner : TComponent),
begin

inherited Create(Aowner);

Width :=10;

Height := 20;

Pen := TPen.Create;

Brush := Bbrush.Create;
end;

5

Figure 5 shows the boundaries of the component
switch with height = 20 and width = 10 pixels.

¢+ Adding the overridden destructor to the declaration
of the component object

type
TS = class(TGraphicControl)
public

constructor create(Aowner TComponent);
override;
destructor destroy; override;
end,;

5

2232

J. Applied Sci., 7 (16): 2226-2240, 2007

¢+ Writing the new destructor in the implementation
part of the unit

destructor TS.Destroy;
begin

Fpen.Free;

Fbrush.Free;

mherited Destroy;
end;
Setting owned objects' properties: As one last step in
handling the pen and brush objects, we need to make sure
that changes in the pen and brush cause the switch
control to repaint itself. Both pen and brush objects have
OnChange events, so we can create a method in the
switch control and point both OnChange events to it.

The following are added to the switch control and the
component's constructor 1s updated to set the pen and
brush events to the new method:

type
T3 = class(TGraphicControl)
published
procedure StyleChanged(Sender : TObject);
end;

]

implementation

constructor TS.Create(AQwner : TComponent),
begin
mherited Create(Aowner),
Width =10,
Height := 20;
Pen := TPen.Create;
Fpen OnChange := StyleChanged;
Brush := Bbrush.Create;
Fbrush.OnChange := StyleChanged,
end,;

i

procedure TS.StyleChanged(Sender : TObject),
begin
Invalidate. True;
end;
With these changes, the component redraws to
reflect changes to either the pen or the brush.

Drawing and refining the component image: The
essential element of a graphic control is the way it paints
its 1mage on the screen. The abstract type
TGraphicControl defines a virtual method called Pamt that

you override to paint the image on the control.
The Paint method for the switch control needs to do
several things:

. Use the pen and brush selected by the user
. Use the selected shape
. Adjust coordinates

Overriding the Paint method requires two steps:

» Adding Pamnt to the component's declaration,

type
TS = class(TGraphicControl)

Protected
procedure Paint; override;
end;
» Writing the Paint method in the implementation part
of the umit,

procedure TS Paint;
begin
With canvas do
begin
case FstationType of
StSubStation :
begin
Pen := Fpen,
Brush := Fbrush;
if status = stOff then
Brush.Color := offColor;

Ellipse(0, 10, 10, 20);
MoveTo(5, 0),
LineTo(5, 10,
end;
StPrimary :
begin
Pen := Fpen,
Brush := Fbrush;
if status = stOff then
Brush.Coloer := offColor;

MoveTo(0, 10);
LineTo(10, 20),
MoveTo(10, 10);
LineTo(0, 20,
MoveTo(5, 0);
LineTo(5,15),
end;

2233

J. Applied Sci., 7 (16): 2226-2240, 2007

/
N

Fig. 6: Shape and pixels of the switch component

The resulting shape of the switch is depicted as in
Fig. 6. It consists of a 10 pixels long line and a circle
adhered to that line with a radius of 10 pixels.

By doing the previous steps, the switch control is
ready to be implemented and used.

As seen before, the programming part of this project
15 done mamly using the Cable and Bus-bar components.
These components were designed and implemented to be
used by any other application independently from this
project. This chapter will explan how to use these
components.

INSTALLING THE COMPONENTS

Although we used Station and Cable components,
the child components (Switch and Bus-bar) can be used
too. Child components mean that their properties are
mherited from their parents. In this case the parent 1s the
component Station. Firstly, you must install these
components in Delphi to appear in the Visual Component
Library, or VCL, together with Delphi’s components.

* You must have the following files:

. oswitch.pas
. cable.pas

. busnar.pas

. Ppstation. pas

. untGrid. pas.

* Save these files in one directory.

* Run Delphi if it 1s not running,.

¢ To install the components into Delphi use one of the
following methods:

. Pick Component | Install component from the
mentu.

. Specify the files to be installed (not necessary
all of them).

. By pressing the button OK, the followmg
Dialog box (Fig. 14) will appear showing the
files you have selected. The path in this case is
Diours‘components (you can put these
components m any other directory).

. Finally, press Compile and save your work. The
new components will appear in a new palette
called Circuits m your VCL.

Using the components: After installing the components in
Delphi, you can use the new components exactly as if
they came with Delphi. You can put them m any form,
modify thewr properties at Design time or call their
methods at design time by attaching codes for their
events. The key properties and methods for each
component will be described n the next sections.

Switch component: The design time properties will appear
in the Object Inspector as in Fig. 6. You will be familiar
with most of these properties except offColor,
StationType and Status. OffColor refers to the color of the
switch when it is in its off status. StationType is a field to
determine the type of the station whether it is a primary
station or a substation and Status specifies the status of
the switch whether 1t 1s on, off or earth. To change their
values at design time you just write the new value or pick
it from a dropdown list. During run time, for example, you
can attach the following code to the OnClick Event for
Buttenl in order to change the status from stOn to stOff:

procedure TForm1 . Buttonl Click(Sender: TObject);
begin
S1.Status := stOIf,

end;
Cable component: Cable component is nothing more than
a line that can be drawn vertically or horizontally. The
property that controls this is called HV and has two
values (tV, tH). Place a Cable in a form and trigger this
value to see the result Figure 7 shows the cable with HV
set to tV, while Fig. 8 shows the same cable with HV set to
tH.

Bus-bar component: The Bus-bar 1s a simple rectangle. Its
properties are a subset of properties defined in the
Delphi’s TShape Component. No special properties are
defined (Fig. 8).

Station component: Station component i1s the most
important object in this project. Fig. 9 shows the
component at design time.

The Object Inspector in Fig. 9 shows the Station
properties. As you notice, five of these properties are
themselves objects and can be expanded one level more
to set their properties. These objects are S1, 52, 53, S4 and
35. These objects are identical to each other and have the
same set of properties. Each of them is an ordmary switch.

2234

J. Applied Sci., 7 (16): 2226-2240, 2007

= }= §1 |

1

Fig. 9: The station component with switches at design
time

Therefore, expanding any of them will give the same set of
properties defined for the switch component. You can set
the Station properties at design time using the Object
Inspector as described in previous sections. An example
of uging this component at run time iz to change the
Station’s Color. To change the stationColor property at
run time, you may write the following piece of code:

PStationl.StationColor := clRed;

Unit untgrid: Thiz unit includes many important
procedures that can be used altogether with the previous
components to produce meaningful circuits. This unit is
designed to produce circuitz at run time. The most
important procedures of thiz unit will be described in the
following sections.

Note that this section describes how to use the
procedures and functions only and not how to create
them. Note also that, to use any of the following

= i

Fig 10: A station at run time {(with switches)

procedures, untGrid must be added in the Uses part of the
unit that will use the untiGrid. For example, you may write:

Uses untGrid;

Then, you must have a variable of type TGrid which
ig defined in untGrid. The following procedures and
functions are methods of this variable. You may write the
following code to create such variable:

Var myGrid: TGrid,;

Creatstation function: The syntax of the function is as
foll ows:

function CreateStation{Par : TWinControl; h, v : integer;
code : string; Color : TColor): integer;

This function iz used to create a station during run
time (Fig. 10). Par is the parent that this station will be
drawn on. Variablez h and v determine the poszition to
draw on. Code is a string that is used to specify the name
of the station. Color is the color of the station used in
drawing. It refains an integer that is used as a handle for
this station. Thiz integer iz used in other procedures
within untGrid unit to refer to the same procedure.

To create a station, prepare a form with a button and
attach the following code to the On Click event for that
button:

X : = myGrid.CreateStation{forml,
cIBlack);

2, 2, 'Stationl’,

This statement will draw a black station called
Station 1 on form 1, at row 2 and column 2. The variable X
iz an integer that will hold the retained integer. As shown
in Fig. 10, the station initially consists of a bus-bar only.
To add switches you have to use SetSwitch function as
described in the next section. Figure 10 shows a station
with two switches, one switch status is on and the second
iz off. Figure 11 shows a stations without any switches.

2235

J. Applied Sci., 7 (16): 2226-2240, 2007

Py =)

Fig. 11: A station at run time (without switches)
Setswitch procedure:

The syntax is:

procedure SetSwitch (Index, Order : infeger; status :
TStatusType; ST TStation; SwitchCode,BusCode,
StationCode : String; M : TPopUpMenu);

This function is used to set the status of a switch in
a specific station. Index iz an integer that refers to a
station, as described in the previous section. Order is an
integer form 1 to 5 that determines the location of the
switch relative to this station. Status is a variable of type
TstatusType that determines the status of the switch to
be drawn (on, off or earth). ST is a variable of type
Tstation that determines the type of the station; if the
station is primary, the switch will be drawn as an *X’
shape otherwise, it will be drawn as a circle. SwitchCode,
BusCode and StationCode are strings that specify the
name of the Switch, Bus-bar and Station, respectively. M
is a popup menu that will be displaved whenever the
switch is clicked. As an illustrating example, adding two
switches to the previous station is done by adding the
following code:

myGrid.setSwitch{x, 2, stOn, stSubStation, 'Switch2',
"BusCode', 'stnCode’, M1);
myGrid.cetSwitch(x, 4, stOff, stSubStation, 'Switchd’,
"BusCode', 'stnCode’, M1);

The first statement will create a switch in the second
position (relative to the station) with ON status, while the
second statement will create a switch in the forth position
with OFF status (Fig. 11).

Linkstations procedure:
procedure LinkStations(Index1, Index2, O1, O2: integer;
Par : TWinControl; CableCode : integer; Color : TColor; M
: TPopUpMenu);

This procedure is used to link any two stations
determined by Indexl and Index2. Par is the parent
(background), which the link will be drawn on. CableCode

ey

Fig. 12: Generated stations

Fig. 13: Generated connected stations

is an integer that uniquely identifies the cable. Color is the
color of the cable that will be used in drawing. M is a
popup menu that will be displayed if the cable is clicked.
To test this procedure, we’ll use the previous example in
the last section. First we need fo create another station
and then link between the two stations. The following
lines of code must be added:

v: = myGrid.CreateStation (forml, 4, 3, 'Station2’,
clBlack);

myGridsetSwitch(y, 1, stOn, stPrimary, ‘'Switchl’,
'BusCode', 'stnCode’, M1);

myGrid.setSwitch(y, 5, stOn, stPrimary, ‘'Switch5’,

'BusCode', 'stnCode’, M1);

Figure 12 shows form1 after adding a second station
by writing the above three lines.

Now, the link between these ftwo stations ig
performed by writing the foll owing statement:
myGrid.LinkStations(x, ¥, 2, 1, form1, 1234, clBlack,
M1);

This statement will link the two stations. The end
points of the link are switch 2 in the first station and
switch 1 in the second station. The final result iz shown
inFig. 13.

Delphi does not support the feature of drawing a
single line that is not straight. The cable that linked

2236

J. Applied Sci., 7 (16): 2226-2240, 2007

Fig. 14: Stations connectivity

vertical short line that resides inside

The first piece of the cable is a

boumdary of the component station 1

The second piece of the cable is a
vertical Jong line that resides onlside
the boundary of the two stations

the

borizontal long line that resides inside

The fourth piece of the cable is 2

boyndary of the component station 2

The fifth picee of the cable i3 a
wvery short line that resides inside
boundary of the component station.

Fig. 15: Logically generating cable drawing

station 1 and station 2 in the previous example consists of
5 separate pieces of the same object, which is the cable
object.

Figure 14 shows the link between the two stations.
From the user point of view, the connection is one single
cable, but from the technical point of view, the cable is

The third piece of the cable
is a horizontal long line that resides
outside the boundary of the two stations

constructed of five separate cables joined together
through special mapping functions. The following figures
make the picture clearer (Fig. 15).

Figure 16 presents the four approaches especially
developed to logically generate and draw the different
circuits. These four different approaches are based on

2237

J. Applied Sci., 7 (16): 2226-2240, 2007

620 621 622 623 620 621 622 623
625 624 525 624

626 627 26 627

Frist approach, exemple Second approach, example

620 621 622 623 624 621 622 623
626 625 626 625 624
627 627
Third approach, example Fourthapproach, example

Fig. 16: Four different techniques for logically generating and drawing circuits

vl* S

.umm‘“‘
h’!lr—“

L-l:r.‘_.

 r Mparm
12 el gty
e TR

= & Aigosiber,

Eiruss | 4008
Cemad | TE

Fig. 17: A snapshot of a screen showing a logically generated circuit

four different algorithms which utilize space and speed
up the drawing. Figure 17 shows a snapshot of a screen
showing a logically generated and drawn circuit.

IMPLEMENTATION OF THE FULL
SYSTEM IN DELPHI

A number of procedures and operations are used to
perform different network operations on the Electrical
Distributed Management System. These networks were all

programmed using Delphi to carry out many of the control
centre operations such az adding new stations, retiring
old stations, tracing the flow of a given circuit, isolating
a station for maintenance, izolating a complete circuit for
maintenance, redirecting the flow of electricity, etc. These
operations require decizion making capabilities which can
be provided either by the engineer at the control centre or
by the system. It is beyond the scope of this article to
explain how each of these procedures was designed and
programmed.

2238

J. Applied Sci., 7 (16): 2226-2240, 2007

The grid: All the procedures that are used to carry out the
various networlk operations on the network are performed
logically on a grid and physically on a panel. The grid 1s
defined as a two-dimensional matrix imtially set to empty.
Cells are marked as non-empty if they are occupied by an
element on the panel. Two procedures are used to perform
the mapping function between the grid cells and the panel
pixels. To draw an element on the panel, its position 1s
marked first on the grid and then the mapping function is
used to get the corresponding x-y coordinates on the
panel and finally draw the element at that position.

Draw procedure: Starting from any switch, station or a
primary, this procedure draws the complete circuit of the
given station to the open pomnts (“off” switches) or to the
comnecting primary station. Firstly, the starting station 1s
taken as an argument. All the ‘on” switches in this station
are pushed in the stack. Then repeatedly an element of the
stack 1s popped and the connecting station of the switch
mn that element 1s looked up. At this stage both stations
are drawn by applying one of the algorithms. Then all of
its out (on) switches are pushed into the stack and so on.
This operation of pushing on the stack continues until
reaching an open pomt (off switch) or a primary station
(circuit breaker). The procedure terminates when the stack
is empty.

Four different approaches to display the network were
developed and tested. Approach 1 drew the circuits with
the least space utilization. Space utilization was improved
with approaches two, three and four consecutively. The
effect on speed of display and operations was mimmal,
but space utilisation was drastically mmproved. The
readability of these logical displays were shown to control
engineers and 1t was decided that approach three was the
most readable by them although approach four gave the
maxiumum possible space utilization. Figure (Fig. 17) shows
a snapshot of how one of the network displays is actually
shown in Delphi.

CONCLUSIONS

Schematic displays are tedious to follow by the
control engmeers since stations are spread over large
geographical areas and the process of zooming i and
zooming out is not of great help. The tedious process of
adding new stations or retiring unwanted stations
becomes very easy when using the logical display rather
than the schematic display. This paper proposed and
demonstrated new technicues for logically generating and
displaying electricity distribution network circuits using
Delphi compenents. The new approach proved to be more
efficient in terms of speed, readability and in carrying out

routine operations on the network. The system allows
dynamic control over the network by allowing operations
on the switches.

REFERENCES

Al-Arali, M., 1999. The effect of different data structures
on speed m an electrical distribution network.
DISTRIBUTEC Conference, 1999, UK.

Al-A'ali, M., 2006. Tmproving the speed of electrical
distribution network systems by improving data
representation techniques. WSEAS Trans. Circuits
Syst., 5: 1124-1131.

Baxevanos, .S, and D.P. Labridis, 2007. Implementing
multiagent systems technology for power distribution
network control and protection management. IEEE
Trans. Power Deliv., 22: 433-443.

Carvalho, PM.S., L M.F. Barrunche and L. A.F M. Ferreira,
1999. An evolutionary approach to operational
planmng and expansion planning of large-scale
distribution systems. 1999 TEEE Transmission and
Distribution Conference, 1999,

Carvalho, PMS., LAFM. Ferreiraa and
L. M.F. Barrunchob, 2006. Optimization approach to
dynamic restoration of distribution systems. Int. T.
Electrical Power Energy Sys.,

Clavijo, TA., M. Segarra, C. Baeza, C.D.Moreno,
R Sanz A Iimenez, R. Vazquez, F.J. Diazand A. Diez,
2001. Real-time video for distributed control systems.
Control Engineering Practice, 9: 459-466.

Gorisek, T, 1997. Distribution network automation
utility experience. 10th International Conference on
Power System Automation and Control. PSAC'97,
pp: 103-108.

Herrell, D. and B. Beker, 1998. Modeling of power
distribution systems in PCS. IEEE 7th Topical
Meeting on FElectrical Performance of Electronic
Packaging, pp: 159-162.

Li, H., Hsiao-Dong Chiang, W.G. Gale and I.T.F. Bennett,
1999. Anmeident based commectivity trace system for
distribution network: Algorithm and implementation.
1999 TEEE Power Engineering Society Summer
Meeting.

Mmg-Yang, H., C.8. Chena and CH. Linb, 2005.
Innovative distribution
systems by considering short-term load forecasting
of service zones. Int. J. Elect. Power Energy Syst.,
27: 417-427,

Kashem, M.A., G.B. JTasmon and V. Ganapathy, 2000. A
new approach of distribution system reconfiguration
for logs minimization. Elect. Power Energy Syst.,
22: 269-276.

service restoration of

2239

J. Applied Sci., 7 (16): 2226-2240, 2007

Lestan, D. and I. Gorisek, 1997. Distribution network
automation utility experience, 10th Int. Conference on
Power System Automation and Control. PSAC'97,
pp: 103-118.

Manjunath, K. and M.R. Mohan, 2007. A new hybrid
multi-objective quick service restoration technique for
electric power distribution systems. Int. I. Elect.
Power Energy Syst., 20: 51-64.

Pitrone, N., 2006. Computer based tools for distribution
network automation. Proceedings of the 6 th IASTED
International Conference on European Power and
Energy System, 161-166.

2240

Wainwright, 1., 1997. Engineering the benefits of a
geographical information system: The business case
for GIS (Conference Paper). Wainwright, I. TEE
Colloguium on Engineering the Benefits of
Geographical ~ Information Systems (Digest
No.1997/105). TEE, London, UK., pp: 1-7.

Yeh, E.C. and H. Tram, 1997. Information integration in
computerized distribution system planning. IEEE
Trans. Power Syst., 12: 1008-1013.

	JAS.pdf
	Page 1

