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Abstract: Macro-elements are one of the powerful means in reducing number of equations to be solved in finite

element analysis. This 1s because a single macro-element will represent many fimte elements. In this study a
rectangular plate bending macro-element was developed This macro-element is based on equivalent energy

theory. The developed macro-element was tested and the results were compared with the results of the
conventional plate bending finite element solutions. Excellent results were achieved with substantional

reduction m number of equations required for the solutions. This reduction in number of equations will save

computer storage and time especially for large structures.
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INTRODUCTION

The analysis of large structural systems using the
conventional finite element method is impractical. This
15 because of the necessity to use relatively fine mesh
to obtamn an accurate model. This will lead to a large
mumber of equations to be solved. Therefore, it is
advantageous to seek for approaches that reduce the total
mumber of degrees of freedom needed to successfully
model large systems. One of these methods 1s to use
macro-elements.

In this study a new rectangular plate bending
macro-element were developed and called Hamad,
Armanios and Negm (HAN) macro-element.

This macro-element is based on transformation
structural
equivalent macro-element This 1s done by preserving
the same potential energies of the structure modeled

of many finite elements into single

by finite elements and the same structure modeled by
macro-elements.

The macro-element is based on the improved
rectangular fimte element of Armamos and Negm (AN)
(1983).

The AN. fnite element i1s an interesting one this
because the variation of the normal deflection over the
element in terms of the various nodal displacements is
expressed n simple parametric form scanning the space
between Adini-Clough-Melosh (ACM) finite element and
the Papenfuss fimte element. That 1s, the parametric shape
functions are chosen in such a way as to create a family
of elements with varying ability to produce basic
bending modes and satisfy inter element compatibility

requirements.

Fig. 1: The Armanios and Negm rectangular finite element

PLATE BENDING FINITE ELMENT USED IN THE
FORMULATION OF THE MACRO-ELEMENT

The AN. fimte element has four nodes with three
degree of freedom per node (Fig. 1). It 1s Kuchhoff type
plate bending finite element.

The displacement vector 1s:

{ ¢ J = [W1_Wi,y W1,x ]
Where,
[-1,2,3,4

The nodal
displacement vector is

forces vector corresponding to  the

{Fi J: [PanWyi]
FORMULATION OF MACRO-ELEMENTS

The stiffness matrix of a macro-element 1s formulated
by equating the strain energy of the origmal structure
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modeled by finite-elements and that of the equivalent
macro-element model as follows:

U,=U, (1

Where,

U, = The strain energy of the original structure
modeled by many  finite elements that
constitute one macro-element.

U, = The strain energy of the macro-element.
‘é{qu[Sko]{qo}:%{qu[Km]{qm} 2

Where,

q, = Displacement vector of the structure
modeled by  many  fimte elements that
constitute one macro-element.

Q. = Displacement vector of one macro-element.

[Sk,] = The assembled stiffness matrix of all stiffness
matrices of the finite elements constituting one
macro-element.

[K,] = The stiffness matrix of the macro-element.

Let the displacement vector of the original structure,
(which constitute one macro-element) {%.} be related to
that of the macro-element {* } as:

it = [T] {ga} 3)

Where: [T] is the transformation matrix for the macro-
element. Substituting Eq. 3 into Eq. 2 gives:

{qu [T]" [SKo] [T] {qa} quJ (Kol {aa}
[T]"[SK.][T] = [K,] “4)

In the solution, matrix [SK,] 1s not needed, only [K,],
the stiffness matrix of a single finite element bounded by
the macro-element is needed. To explain this let.

=
Il

The number of finite elements comprising the
macro-element.
[T.] = The finite-element transformation matrix.

Every tume [T.] carries a partition of the
transformation matrix [T] that corresponds to the degrees
of freedom of the finite-element under consideration. The
transformed stiffness matrix for each finite-element is
placed in its proper place in the structural stiffness matrix
of the equivalent model, which 1s the place of [K,], as:

SILT K= [K,] (5)

The transformation matrix [T] is simply the evaluation
of the shape functions of the macro-element at the nodes
of the finite-element. This evaluation is based on local
coordinates for the nodal points of the finite-elements
with respect to the macro-element nodes.

To form a general transformation matrx [T]
corresponding to an arbitrary nodal pomt 1 of a certain
finite element within a certain macro-element, consider the
notation Ny; which means that shape function k of node I
of this macro-element is evaluated at point 1 using its local
coordinates within the macro-element.

The transformation matrix For the Armanios and
Negm rectangular element will be as :

i
qi2 :[Tl]z*lz
Qs
[T ]=[T, T, T, T.]

{qm }12*1 (6)

Where,

T, = The participation of (T, that correspond to
node T of the macro-element under consideration.
Where:1=1, 2, 3 and 4 and:

Nu Nzl N31
[Tn]: _Nmy 'szy 'szy
N,.x N,,.x N,.x

e 212 3=

The shape function derivatives Nyy and N, x
k=1, 2, 3) are evaluated using the chain rule.

The shape functions (N;) and the stiffness matrix of
this element are stated in (Armanios and Negm, 1983).

Macro-element load vector: The externals loading are
applied at known nodes of the finite element model.
However, these nodes may not necessarily coincide with
the macro-elements nodes. Tt is required to calculate the
equivalent consistent nodal load vector of each macro-
element.

In general, all forms of loading other than
concentrated loads subjected to the original structure
nodes must be first reduced to equivalent nodal forces
acting on the original structure, as with the conventional
finite element method. The nodal load vector of the
original structure can then be transformed to equivalent

macro element structural load vector by equating the
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external work done on the original structure modeled by
finite-elements and that of the macro-element model
as follows:

W, =W, (7)

Where,

W, = The external study done on the original structure
that constitute one macro-element.

W, = The external study done on the macro-element.

) g = i ®)
Where,
{F,} = The assembled nodal load vector of the
finite-elements constituting one macro-element.
{F.} = The equivalent nodal load wector of the
macro-element.
Substituting Eq. 3 mnto Eq. 8 gives:
{qu [T]" {F.] = {qu {Fal
[T]" {F.} = {Fa} 9)

Where, [T] is the same transformation matrix used in
deriving [K_].

The assembly of all the macro-element stiffness
matrices into a structural stiffness matrix and also the
construction of the macro-element structural load vector
and solution of the structure equation are the same as that
of conventional finmte element method.

APPLICATIONS

Various problems of plate bending analysis are
solved and presented below in order to demonstrate the
efficiency of the macro-elements developed.

The accuracy of the macro-elements are checked by
using the conventional finite elements method and, if
available, the exact solution.

The moments and stresses are generally calculated
at the Gauss points of the macro-elements in the problems
presented here unless it 1s stated differently.

Problem No. 1: The analysis of thin rectangular
orthotropic plate simply supported along two opposite
sides

and free along the others and under two

concentrated loads as shown in Fig. 2.

O FE nodes
© ME nodes

Fig. 2: The plate for problem No. 1

Table 1: Matrices D in (MN.m) for the finite elements of plate for problem

No. 1
FE D11 D12 D13 D22 D23 D33
land2 5.0 0.4 0.0 1.0 0.0 0.80
3and 4 4.0 03 0.0 1.0 0.0 0.65
Sand 6 3.0 0.2 0.0 1.0 0.0 0.50

The following data given for this problem:

Plate dimension = 4*6 m
FE Dimension = 1*1 m
P.,=001MN

The basic finite elements mn the mesh have different
orthotropies as shown in Table 1. Due to symmetry, only
one quarter of the plate 13 analyzed. The analysis 15 done
using a special case of the Armanios and Negm element.
Table 2 shows that the total number of degree of freedom
is reduced to (33.33%) with the macro-element. In the
formulation of the elements stiffness matrices and
calculation for stresses a (3*3) Gaussian integration order
is used. The results for deflections along x- and y-axis
are shown in Fig. 3 and 4. Table 3 shows the errors for
deflection at points A and B Fig. 2. These errors are
measured from the (2*3) conventional FE analyses.

The results for moments M, and M, are shown in
Fig. 5 and 6. These moments are at the nearest line of
Gauss points of the original 2*3 FE modeling beside the
x- and y-axis, respectively, i.e., section A-A and B-B as
shown in Fig. 7. Extrapolations for moments are done
where 18 required.

Figure 5 and 6 represent two types of stress
calculations for the macro-element analysis. The ME,
represents the moments at the Gauss pomnts of the
sub-elements forming the ME Fig. 7. The ME, is
achieved after calculating the nodal displacements of the
sub-elements from the ME nodal displacement vector and
using the transformation matrix (T).
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Table 2: Details for problem No. 1

Table 3: Deflections and their comresponding errors at selected points on the

Mesh No. of nodes Total degree of freedom plate of problem No. 1
2*3 conventional FE 12 36 Deflection at  Error  Deflection at. Error
1#1 equivalent ME 4 12 Mesh point A (cm) (&) point B {cm) (%)
1#3 conventional FE 8 24 2%3 conventional FE 2.275906 - 2.489945 -
11 equivalent ME 2248874 1.19 2447316 1.71
. 7‘_2.0 1.0 0.0 1.0 2.0 1*3 conventional FE 2.248826 1.19 2443514 1.86
— 243 FE Mesh
H 27 ----1*1 ME mesh and 1*3 FE Mesh
& 2251 0 o -~
£ | asmemsesmm=ssmmano d
E 254 Element type
- (Armanious and Negm) 5
275 withP=0and P1=0

Fig. 3: X-axis deflection for problem No. 1

0—3 0 20 -1.0 0.0 1.'0 2.0 3.0
2*3 FE Mesh
0254 \ — — 1*1 ME Mesh and 1*3 FE Mash
0.5

0,751

Element type
1.54 (Armanious and Negm)
withP=0and P1 =0

Deflection {cm)
B -

1.754
2
2.251 = o

25

Fig. 4: Y-axis deflection for problem No. 1

20 -1.0 0.0 1.0 20
1 1 1 1
2%3FEMesh | == 1*1 ME1 Mesh
-—— 1*3FEMesh | ——- 1%1 ME2 Mesh

Element type
— — {Armenious and Negm) — — £
withP=0and P1=0

Moment M, KNmm

Fig. 5 M,-Diagram along section A-A for problem No. 1

4 Element type
{Armanious and Negm)
with P=0and P1=0

Moment M, KNmm )y

24
— 2*3FEMesh| = 1*1 ME1 Mesh

14 =—=- 1*3 FE Mesh| ———- 1*1 ME2 Mesh

0 T T T T T

-3.0 2.0 -1.9 0.0 1.0 2.0 30

Fig. 6: M,-diagram along section B-B for problem No. 1
Problem No. 2: The analysis of thin square clamped
1sotropic plate with sloped bottom surface under a

uniformly distributed load as shown in Fig. 8.

The following data are given to this problem :

L = 7.2m.

t = Variable from 0.105 m at center of plate
to 0.225 m at the edges of the plate, i.e.,
bottom slope 18 3.33% m x or y direction.

E = 25*10°KNm .

G, =105932*10°KNm™.

Kinu) = 0.18

Q, = 9126 KNm*.

Due to symmetry only one quarter of the plate is
analyzed.

The analysis 1s done using the Armanios and Negm
element m its optimum case for isotropic plate 1.e,
P=1andPl =1.

Figure 9 and 10 shows the central deflection values
and central moments (M, or M.} values obtained from
different conventional finite element meshes. The
corresponding percentages of error are also shown in the
Fig. 9 and 10.

These errors are measured from the (12 * 12)
conventional FE analysis of the problem.
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Fig. 7: Gauss points locations for problem No. 1 of the original FE X of the ME
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Fig. 9: Central deflection of plate for problem No. 2
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8.5 1 Element type
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Fig. 10: Central moment M, or M, for problem No. 2
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Fig. 11: Quarter of plate for problem No. 3

Problem No. 3: The analysis of thin square clamped
sotropic plate with square holes under a central
concentrated load as shown in Fig. 11.

The following data are given to this problem:

L, E G, and p are as before in problem-2.
t =018m.
P, = 242223 KN.

Due to symmetry only one quarter of plate 1s
analyzed.

The quarter of the plate has three square holes as
shown m Fig. 11. Each hole 13 represented by a
conventional FE which will be a sub-element inside a ME
when analysis is done with the equivalent energy theory.
Such FE is defined by assuming its thickness equal to
zero. Stress concentration beside these holes are not

Table 4: Details for problem No. 3

Total Reduction in
ME size No. of degree of  degree of
Mesh (FE*FE) nodes freedom freedom (%0)
8*8 conventional FE - 81 243 -
44 equivalent ME 2%2 25 75 69136
2#2 equivalent ME A4 9 27 88.889
1*1 equivalent ME 8*8 4 12 95.062

considered in the analysis, which is done using the
Armanios and Negm element in its optimum case for
isotropic plates, i.e., P=1and Pl =1

Table 4 shows the details of the original FE model
and the equivalent ME models.

Figure 11-14 shows the deflection along the x-axis
and section A-A, respectively. The maximum errors are at
the center of the plate, as shown in Table 5.

These errors are measured for the (8*8) conventional
FE analysis.
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Table 5: Central deflections and their corresponding errors for problem

No. 3
Mesh Central deflection (mm) Error (%)
8*8 conventional FE 5.8813508 -
4% ME 5.855182 0.50
2+2ME 5.841002 0.74
1¥1 ME 5.504848 6.45
6.0 Element type
{Armanions and Negm)

with P=1and P1=1

Deflection (mm)
(]
<

8*8 FE Mesh —-——

44MEMesh — "\
4.0- 22 ME Mesh X
1#1 ME Mesh ~———————-3
0.0 . . .
0.0 09 18 27 36
x-axis {m)

Fig. 12: x-axis deflection for problem No. 3

3.0 Element type
(Armanious and Negm)
withP=1andP1=1

Deflection {mm)
&
L

—
(=]
1

8*8 FE Mesh
4%4 ME Mesh ~—f-———>
05+ 2#2 ME Mesh
1*1 ME Mesh ———————m e ——
0.0 : . :
0.0 09 13 27 3.6

x-axis (m)

Fig. 13: Deflection along section A-A for problem No. 3

Element type
(Armanious and Negm)
withP=1and P1=1

§*8 FE Mesh

2%2 ME Mesh
r—'l"l ME Mesh
I
1

Moment M_ (KN, mm ")
[+
<

0.0 0.9 1.8 27 36
x-axis (m}

Fig. 14: Moment M, along x-axis for problem No. 3

RESULTS AND DISCUSSION

The three solved problems showed that using
the macro-elements in the analysis reduced the
number of equations to be solved. When the size of the
macro-element used i1s of moderate, excellent results are
achieved with good amount of reduction in degree of
freedom and computer time.

But when the size of the macro-element is large still
acceptable results are achieved with substantial
reductions in degree of freedom as shown in Table 3-5.

CONCLUSIONS

New rectangular plate bending macro-element based
on Armaios and Negm rectangular finite element were
developed.

The solved examples demonstrated that using these
macro-elements in the analysis largely reduced the total
number of degree of freedom required to model a certain
structure. This in tum reduced the total number of
equations to be solved.

Reduction i total number of equations reduced
computer time and memory space for storage. This will
allow personal computers to analyze relatively large
structures.

At the same time these ME provided accurate results.
In addition, fimite elements of different sizes, thicknesses
and material properties can easily be used inside the
macro-elements if required in the analysis.

NOTATIONS

The following symbols are used in this study:

D : Flexural rigidity.

E.E, : Moduli of elasticity along x and vy
direction of the plate, respectively.

FE : Fimte element.

{F} . Element nodal load vector.

Fr : Free edge of plate.

U, G and G, : Shear moduli in the z, y and x planes,
respectively.

[X] . The stiffness matrix.

L : Side length of a square plate.

m . A subscript refers to the macro-element
structure.

ME . Macro-element

{M} . The vector of generalized stresses at a
point.

Nu, Nu,, Nu, : Peisson’s rations.

N} . Vector of shape functions.

0 : A subscript refers to the original (finite

element) structure.
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Concentrated force applied on the plate in
the z direction.

Concentrated force at node 1 of an element, in
the z direction.

Element nodal displacement vector.
Uniformly distributed load applied on the
plate in the z direction (force per unite area).
Local coordmates of a pomnt in the x and y
directions, respectively.

Local coordinates of node 1 of an element, in
the x and y directions, respectively.

Simply supported edge of plate.

Thickness of plate.

(T]

X, Y, Z

xandy

The transformation matrix needed in macro-
element construction.

Vertical displacement at node i of an element,
in the z direction.

Global coordinates.

First derivatives of certain function with
respect to x and y, respectively.
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