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Graph Partitioning applied to Fault Location in power transmission Lines
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Abstract: The application of Radial Basis Function (RBF) neural networks for Fault Section Estimation (FSE)
and fault classification and fault location within faulty section m transmission lines 1s presented. At the first
step, a multi-way graph partitioning method based on weighted minimum degree reordering is proposed for
effectively partitioning the original large-scale power system into desired number of connected sub-networks.
After partitioning, the proposed scheme for each part of system consists of six RBFNNs, one networks for FSE,
one for fault classification and four networks for fault location one for each fault type within the faulty section.
For FSE, the relay and circuit brealker states are taken as the input to the distributed FSE system, while the states
(faulted or normal) of transmission lines as the outputs. For fault classification, pre-fault and post-fault samples
of the three-phase currents and another input from FSE are taken as the input, while faulty phase(s) as the
output. For fault location, post-fault samples of both currents and voltages of the three phases and another
input from both FSE and fault classification are taken as the input, while the fault locator as the output. To
validate the proposed approach simulation studies have been carried out on TEEE 11-bus system in normal and
faulty conditions to tran and test the RBFNN. Testing results proved that the proposed RBF networks could

provide great performance for lugh speed relaying. It is accurate, fast and reliable.
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INTRODUCTION

Power system protection is a vital prerequisite for the
efficient operation and continuing development of power
systems (Horowitz and Phadke, 1995). Transmission lines
are the connecting links between the generation stations
and the distribution systems and lead to other power
system networks over intercormections. Fast and accurate
location of the faults 1 an electrical power transmission
line 1s wvital for the secure and economic operation of
power systems. This is more so in view of the fact that as
a result of an increase in transmission requirements and
environmental pressures, utilities are being forced to
maximize the transmission line capabilities of the existing
transmission lines. This effectively means that in order to
maintain system security and stability, there is a demand
for mimmizing damage by restoring the faulty line as
quickly as possible. Thus, the protective system shall be
reliable, selective and very sensitive to all types of faults.

Over the past decade, many artificial intelligence
techniques have found their use in solving the problems
such as expert-system-based (Horowitz and Phadke, 1995;
Coury and Jorge, 1998), fuzzy-set-based (Wang and
Keerthipala, 1998), artificial-neural-network-based
(Sidhu et al., 1995, Dalstein and Kulicke, 1995),

stochastically optimization-based (Dalstein et af., 1995)
and logic-based (Sultan ef al., 1992) approaches.
However, Fault Section Estimation (FSE) and faulty
phase(s) identification and fault location within faulty
section of large-scale power networks still remains
unsolved, because of the large amount of mformation to
be dealt with and the estimation speed and accuracy
required.

Since fault and the operation of relevant relays and
circuit breakers in power networks are local phenomena,
based on the idea of divide and conquer, distributed
intelligent systems for FSE of large-scale power networlks
are suggested, wlich will be more efficient than
centralized FSE systems. The distributed structure can
handle the fault classification and location fault
information more effectively and the FSE task can be
implemented 1 a multiprocessor system without difficulty.

This study presents fault section estimation and the
fault classification and location algorithm within faulty
section using RBFNN for the protection of multi terminal
transmission line. An mtelligent learning procedure 1s
used. [t constructs a compact RBF networks in a rational
way, preserving the advantages of linear learning. Tn this
strategy the network starts with no hidden unit and
hidden umits are added based on the novelty of the data
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(Yingwei et al., 1998; Tageldin et al., 2003). The main
objectives of this paper are: Firstly, After system
partitioning, the distributed FSE system based on hybrid
Radial Basis Function Neural Network (RBF NN) and
companion fuzzy system, secondly realizing the powerful
and robustness of RBFNN for classifying different states
of operation for transmission system within the faulty
section including normal operation, single line to ground
fault, double line fault, double line to ground fault and
three lines to ground fault, thirdly, accurately allocating
the fault within the faulty section. In this study two neural
network for fault section estimation, one neural network
1s capable to achieve both, fault classification and faulty
phase identification and four networks are used for
accurate fault location within the faulty section one for
each type. Existing IEEE 11-bus system 1s used as a real
application to show the walidity of the proposed
algorithm. The system is simulated using Power System
Stability (PSS/E) and Matlab. A large number of fault data
have been generated using PSS/E considering wide
variations in fault inception angle, fault location, fault
resistance and pre-fault load. Using these data, fault
section estimation, fault classification and location are
carried out by means of MATLAB programs that make
use of the neural network toolbox.

PROPOSED MULTI-WAY GRAPH
PARTITIONING ALGORITHM

The multi-way graph partitioning method consists of
two basic steps: realizing an imtial partiion by the
proposed multi-way graph partitioming algorithm based on
weighted minimum degree reordering and further
minimizing the number of the frontier nodes of the sub-
networks through iterations so as to reduce the
mteraction of FSE in adjacent sub-networks.

Proposed graph partitioning algorithm: Suppose G isa
labeled undirected graph with n vertices. Minimum Degree
(MD) reordering (Rose, 1972) can be best described by
elimination graphs. The number of edges incident on the
node x is called degree of node x. After eliminating the
node x from the graph G, the corresponding elimination
graph can be obtained by deleting the node x and its
incident edges and then adding edges between any pair
of nodes j and k for which (x, j) and (x, k) belong to the
graph G but (], k) does not. The elimination process can
thus be modeled by a sequence of graphs, each having
one node less than the previous graph, until only one
node remains. At each step of the elimination process,
MD algorithm selects, as the next node to be eliminated,

a node of minimum degree in the current elimination
graph. If more than one node meets this criterion, the
node with smallest node number 15 chosen.

A 14-bus power network (Fig. la) 1s used as an
illustrative example. Each node is denoted by its T (k),
where T is the node number and k is the assigned
reorderng label through MD algorithm. The dotted lines
represent the added edges in the elinmation process.
It can be seen that the MD reordering is 1 6 9 11 10
872345

In order to balance the calculation burdens of sub-
networks, we assign each node a weight, which 15 an
integer and used to represent the calculation burden of
the corresponding node. Investigation shows that the
calculation burden of a sub-network 1s mainly determined
by the total number of possible fault elements i the
network and hence the weight of a node is defined as the
mumber of its incident possible fault elements (bus and
lines).

Suppose Yn 1s the bus admittance matrix of the given
power network in ascent order of MD reordering k. For
node I, we use the number of the nonzero elements in row
I of the upper triangular matrix (including the diagonal
element) of Yn as its node weight (Fig. 1b) and denote 1t
as node wt(I) = wi. With the weights, the previously
formed MD reordering becomes a weighted MD
reordering.

For graph G with n nodes, let 1, 2,..., n be the
obtained weighted MD reordering, weights denote the
total weight of n nodes and ng the desired number of
sub-graphs.

Frontier node reduction algorithm: After performing the
graph partitoning algorithm, the frontier node sets
crossing different sub-graphs are determmed, which
should be further mimmized to reduce the interaction of
the FSE in adjacent sub-graphs. The node separator
improving method suggested in (Joseph, 1991) is
extended here for the purpose. The original method i1s
applied to mmimize the number of the node separators in
two-way rather than multi-way graph partitioning,.

Let AdjG(x, 1) or Adj(x, U) dencte the adjacent nodes
of xin U, that 15, Adj(x, U) = /Adj(x) . The same way,
for a subset W, Adj(W, U) = /Ad)j(W) )

For any obtained sub-graph Cl (1= /1, 2,..., ng), the
initial value of its corresponding frontier node set is
represented by F1 (1 =/1, 2,..., ng) and defined as:

E = Adj(Cc, , Uy U = C
1 {u|u .]( 1= ): jL>Jl 1° (1)
j=1.....n_}.1=1,..ng

g
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Fig. 1: The reordering weighted MD of 11 bus power
network. a). The 11 bus power network and b)
Upper tr1 angular matrix of Yn

Consider a subset Y of any given frontier node set Fi,
where Adj(Y, Cl) =/C1. The following important
propositions are valid.

Proposition 1: Suppose Fl 1s the frontier node set
crossing Cl and U, then the set F; = (F, - Y) U Adi(Y, C)
15 the frontier node set of the two sets ¢, = C1 - Ad)(Y, C))
andU=UU v

Proposition 2: If |adicy, ¢ | <Y 1;1

.then <|E|

It can be observed that the core 1ssue of the frontier
node reduction algorithm is how to determine a subset Y
of any frontier node set Fl so that the size of Adj(Y, Cl) 1s
less than that of Y. This problem is associated with a well-
known combmatorial problem called bipartite graph
matching (Joseph, 1989, Clark and Holton, 1991).

It should be pointed out that the node-transfer in
the frontier node reduction algorithm might aggravate
the unbalance degree of the obtamed sub-networks.
However, consider the weights of sub-networks are
usually much larger than that of the transferred nodes, the
additional unbalance degree caused by node-transfer is
marginal. Since the frontier node reduction algorithm can
reduce the frontier nodes effectively, this will reduce the
mteraction of the sub-networks apparently.

DESIGN OF RADIAL BASIS FUNCTION
NEURAL NETWORK

The proposed scheme can achieve protective
relaying tasks including fault section estimation and fault
classification and fault location within faulty section.

Fault section estimation: Once the large-scale power
network 1s divided mto appropriate sub-networks, the

P
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v

Fig. 2: The overall system structure of the distributed FSE
system
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Fig. 3: RBFNN based fault classifier

overall FSE system structure with ng sub-networks can be
worked out (Fig. 2). The relay and circuit breaker states (0
or 1) are taken as the mputs to the distributed FSE systemn,
while the states (faulted or normal) of transmission
lines as the outputs. Both preprocessing system and
postprocessing system are simple expert systems. The
preprocessing system collects the iput signals and
feeds them to the corresponding subsystems. The
postprocessing system is responsible for acquiring the
outputs of the subsystems and giving a complete
diagnosis result (Bi ef al., 2002).

For sub-network FSE, the RBF NN can be trained
independently based on training samples and the
elements at the frontier of various sub-networks will have
impacts on adjacent sub-networks, which should be
considered in RBF NN building and training.

Fault classifier: The RBFANN-based scheme for
classification of transmission line faults (Fig. 3). The fault
classifier consists of one NN, five pre-fault and five post-
fault samples of the three-phase currents and another
input FSE from fault section estimation, while faulty
phase(s) as the output. A lndden layer of 50 newrons is
selected. The NN outputs have been termed as A, B, C
and G, which represent the three phases and ground. Any
one of the outputs A, B, C approaching 1 indicates a fault
in that phase. If G approaches 1, it indicates that the fault
1s connected to ground, e.g. output 1001 indicates A-G
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Fig. 4: RBFNN Fault locator

fault. Similarly, output 0110 indicates B-C fault and so on.
Simulation studies have been carried out on the power
system model in Fig. 1.

Fault locator: To estimate the exact fault locator within
faulty section (Fig. 4) four RBFNN, one NN for each type
of fault, 1.e., one NN for L-G faults, one NN for L-L faults
and so on, five per-fault and five post-fault samples of
both currents and voltages of the three phases and
another mput from both Fault section estimation and fault
classification are taken as the input, while the fault locator
as the output. The hidden layer of 60 neuron selected.

COMPUTER SIMULATION RESULTS

Faulty Section Estimation RBFNNs

Performance of the proposed graph partitioning method:
The proposed multi-way graph partitioning method has
been implemented with sparse storage technique, which
only stores and operates nonzero elements and inproves
the calculation efficiency sigmficantly (Mahanty and
Dutta Gupta, 2004).

The test results of IEEE 11-bus system (with ng = /2)
are presented below to show the effectivenmess of
the proposed multi-way graph partitioning method
systematically. The corresponding initial value of the
sub-networks and frontier node sets are listed in Table 1.
The initial frontiers and the reduction results of the
Algorithm 2 are shown in Table 2. The fact that only one
frontier node is reduced is mainly due to the simplicity
and structure of the test system. It can be seen that the
proposed multiple-way graph partitioning method works

Table 1: Obtained sub-networks of TEEE 11-bus system
Obtained sub-networks

1=[1,ng] Cl={xlxe Cl} Wt(Ch
1 6,9,11,10,8,7 11
2 1,234,5 10

Table 2: The frontier node of IEEE 11-bus system
1=[1,ng-1] F1 before reduction
1 4

Fl after reduction
No change

Table 3: Five test cases
Operated relays and tripped CBs

Fault. section

MLP1 MLP2 CB1 CB2 L1
MLP3 MLP4 BLP6 CB3 CB4 CBé L2
MLPS5 MLP6 BLP9 CBS CB6 CB9 L3
MLP7 MLP8 ELP9 CB% CB7 CBS8 4
MLPYMILP10BLPS CB9? CB10 CBS Ls

effectively and can satisfy all the requirements of FSE
problem simultaneously.

The training and performance of distributed hybrid
intelligent system: A sub-network from the TEEE 11-bus
system (ng = 2) is used for the training and performance
of RBF NNs for FSE and fault classification and location
within faulty section. The final state of this power network
15 depicted mn Fig. 5, mn which part 1 (P1) has 5
transmission lines and 5 buses including one on the
frontier. The protection relay system considered in the
computer test 1s a simplified system, which mcludes main
protection for transmission lines (MLP) and backup
protection for trangmission line (BLP).

In computer tests for P1, 28 typical fault scenarios
(N = 28) are worked out to constitute the training sample
set. For each fault scenario, the states of all relays and
circuit breakers (0 or 1) are taken as the NN inputs (ni =
31). The states of the 10 system components (5 buses:
B1/B5 and 5 lines: L1/L5) are the outputs. If a certain
then the corresponding
component 1s considered n fault.

output approaches to 1

s

Fault classification RBFNNs within faulty section:
Different fault types (Table 3) at various locations of each
section of the system under study with different inception
angles and fault resistance were used to test the RBFNN.
Table 4 shows some of the test results for different
system conditions and not presented to the neural
network during the training process. For each case it can
be seen that the values of (A, B, C and G) converge to the
required values and are either very close to zero or to one.

Accurate fault location RBFNNs: All types of faults with
different mception angles and different locations at (0, 20,
40... 100%) of from the circuit under study were simulated
to get the traimng and testing patterns for the RBFNNs.
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Table 4: Testing results of the RBF NN for fault classification with in faulty section

Result output

Fault Fault Faulty

Case inception resistance section A B C G

n n n n -0.0000 -0.0000 -0.0000 -0.0000
a-g 54 0 1 1.0207 0.0188 0.0270 1.0275
a-g 0 100 4 0.9646 -0.0026 0.0131 0.9957
b-g 90 100 3 -0.0103 1.0281 0.0318 0.9813
c-g 0 0 4 0.0825 -0.0202 0.9988 1.0572
a-b 0 0 2 0.9845 1.0141 0.0072 0.0032
b-¢c 54 0 5 -0.323 0.9793 1.0405 -0.0585
c-a 54 0 4 0.9986 0.0118 0.9974 -0.0154
ab-g 54 0 6 1.0554 0.8705 -0.0329 1.1097
be-g 54 0 2 -0.0899 1.0508 0.9319 0.9192
ca-g 0 0 6 1.2345 -0.2098 0.9470 1.1821
abc-g 90 100 4 1.2484 0.8527 1.0343 1.1475

Table 5: Testing results of the minimal RBF network for single line to

Table 6: Testing results of the minimal RBF network for three line to

ground fault ground fault
Fault Actual Estimated Fault Actual Estimated

Fault inception fault fault Fault inception fault fault

type angle (Qo) location location Error (%) type angle (o) location location Error (%)

a-g 0 0.30 0.3009 0.09 abe-g 54 0.30 0.3250 2.50

a-g 54 0.30 0.3065 0.65 abc-g 90 0.90 0.9160 1.60

a-g 0 0.50 0.4983 0.17 abe-g 0 0.50 0.5132 1.32

a-g 0 0.70 0.7017 0.17 abc-g 90 0.70 0.6729 2.71

b-g 54 0.30 0.2868 1.32

b-g 54 0.50 0.5103 1.03 Table 7: Testing results of the minimal RBF network for double line to

b-g 90 Q.90 0.8894 1.06 ground fault

c-g 34 0.10 0.1004 0.04 Fault Actual Estimated

c-g 54 0.30 0.2986 0.14 Fault inception fault fault

c-g 54 0.50 0.4967 0.33 type angle (20) location location Error (%)

c-g 20 0.50 0.5058 0.58 abg 54 0.10 0.1176 1.76
ab-g 0 0.50 0.5153 1.53
ab-g 90 0.50 0.4952 0.48
ab-g 90 0.70 0.7094 0.94
be-g 54 0.30 0.3025 0.25
be-g 90 0.30 0.2994 0.06
be-g 54 0.50 0.5013 0.13
be-g 90 0.50 0.5081 0.81
be-g 90 0.70 0.7078 0.78
ca-g 54 0.30 0.3212 2.12

Fig. 5: Power network for FSE by Distributed RBFNNs

During the testing process, the output digit of the ANN
1s formed within a tolerance 0.003%.

Selective testing results for different fault types
(which were not presented to the neural networks during
the training process) are shown in Table 5-9.

Table 8: Testing results of the minimal RBF network for double line to

ground fault (NNS)
Fault Actual Estimated

Fault inception fault fault

tvpe angle (Bo) location location Error (%)
ab-g 54 0.10 01176 1.76
ab-g 0 0.50 0.5153 1.53
ab-g 20 0.50 04952 0.48
ab-g 20 0.70 0.7094 0.94
be-g 54 0.30 0.3025 0.25
be-g 20 0.30 0.2994 0.06
be-g 54 0.50 0.5013 0.13
be-g 20 0.50 0.5081 0.81
be-g 20 0.70 0.7078 0.78
ca-g 54 0.30 0.3212 2.12

Table 9: Testing results of the minimal RBF network for three lines to

ground fault (NN9)
Fault Actual Estimated

Fault inception fault fault

tvpe angle (8) location location Error (%)
abc-g 54 0.30 0.3250 2.50
abe-g 90 0.90 0.9160 1.60
abe-g 0 0.50 0.5132 1.32
abc-g 90 0.70 0.6729 2.71
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The error is calculated by:

Actual fault location —

Calculated fault locati 3)
Error (%) — culated fa .oca on s
Total faultry section leagh

CONCLUSIONS

In this study, a novel integrated protective scheme
for large scale power system is introduced A new
structure of neural network diagnostic system for fault
classification, faulty phase identification, faulty section
estimation and reasonably accurate fault location 1s
proposed.

The techmque is based on the use of the Radial Basis
Function Artificial Neural Network. The proposed scheme
deals with all types of faults and all fault conditions,
including different fault types, fault inception angles, fault
resistance and fault location. As a case study, the TEEE
11BUS transmission system was established by collecting
elemental samples of voltage and current waveforms
using PSS/E. The diagnosis system consists of two
hierarchical levels. The first is for pre-processing and
the second for neural networks. These networks are
responsible for fault classification as well as faulty phase
identification, faulty section estimation and fault location
within the faulty section. The new structure of the
RBFANN can be easily adapted to deal with the changes
of relaymg scheme through the user mterface. Accuracy
in testing results was reasonable, irrespective of different
system conditions. Therefore, it validates the proposed
Diagnosis system for cases contained in the training set
as well as for new testing cases.
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