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Abstract: In this study, an effective method, we called PTM-FEM, is proposed to evaluate the probability of
failure in analytical form, mnstead of approximation methods like FORM/SORM, no series expansion 1s involved
in this expression. This method is based on the Finite Element Method (FEM) to get the expression of the
response of stochastic systems then to lLinearize step-by-step this expression and finally to apply the
probabilistic transformation method (PTM) of random variables to obtain the probability density function of
the response. After that, the computation of the failure probability 1s straightforward. An application of 25-bar

truss structure is provided to illustrate this method.
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INTRODUCTION

The problem of reliability analysis of stochastic
mechanical systems 1s of central importance in the safety
assessment of structures. In a stochastic system, a large
number of random variables influences the performance of
the system, e.g., Young's modulus, external loads ... The
performance of the system 1s evaluated by a best-estimate
code. Consider a performance criterion Y of the system
depending on the mput variables X, X,,.... X, the
function Y = g(¥X,, ¥,,...,X,) is a random variable to be
determined.

In order to get the information about the uncertainty
of Y, a number of FE runs have to be performed. For each
of these runs, all identified uncertain parameters are varied
simultaneously.

According to the exploitation of the result of these
studies, the uncertainty on the response can be evaluated
either in the form of an uncertainty range, or in the form of
a probability density fimetion (pdf).

UNCERTAINTY RANGE

A two-sided confidence interval [m, M] of a response
Y, for a fractile ¢ and a confidence level p is given by:

P{P(m<Y <M)=a}=p

Such a relation means that cne can affirm, with at the
most (1-p) percent of chances of error, that at least «
percents values of the response Y lie between the values
m and M (Glaeser, 2000). To calculate the limits m and M,
the technique usually used is a method of random
simulation combined with the formula of Wilks (1941).

The advantage of using this technique is that the
number of code calculation needed 1s mdependent of the
number of uncertain parameters. However for reliability
evaluation, this method is not very useful because it 1s
difficult, indeed impossible to interpret the two levels of
probability (¢ and B) in term of reliability value for the
system.

PROBABILITY DENSITY FUNCTION

The uncertainty evaluation in the form of a pdf gives
richer information than a confidence interval. Once the pdf
of the system response is determined, the reliability can
be directly obtained for a given failure criterion. However,
the determination of this distribution can be expensive in
computing time. The following paragraphs describe the
various methods available for this evaluation.

Method of monte-carlo: The method of Monte-Carlo
(Rubinstein, 1981; Devictor, 1996) 1s used to build pdf, as
well as to assess the reliability of components or
structures or to evaluate the sensitivity of parameters.
Monte Carlo simulation consists of drawing samples of
the basic variables according to their probabilistic
characteristics and then feeding them into the
performance function In this way, a sample of response
{Y,.j=1...N} is obtained.

The main advantage of the Monte-Carlo method is
that this method is valid for static, but also for dynamic
models and for probabilistic model with continuous or
discrete variables. The main drawback of this method is
that it requires often a large number of calculations and
can be prolubitive when each calculation mvolves a long
and onerous computer time.
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Response surface method: To avoid the problem of long
computer time in the method of Monte-Carlo, it can be
interesting to build an approximate mathematical model
called response surface (Rajashekhar et al., 1993).

Experiments are conducted with design variables
¥, X,.... . X, a sufficient number of times to define the
response surface to the level of accuracy desired. Each
experiment can be represented by a point with coordinates
Xy, Xg-...Xy 1N an n-dimensional space. At each point, a
value of y, 1s calculated. The basic response procedure is
to approximate by a simple mathematical model, such as
an n* order polynomial with undetermined coefficients.

When a response surface has been determined, the
system reliability can be easily assessed with Monte Carlo
simulatiorn, in using the approximate mathematical model,
but this response surface must be qualified The practical
problems encountered by the use of the response surface
method are m the analysis of strongly non-linear
phenomena where it 13 not obvious to find a family of
adequate functions and in the analysis of discontinuous
phenomena.

FORM/SORM: We present now specific methods usable
for a direct evaluation of the reliability, without the need
of defining the pdf of the system performance.

The performance fimction of a stochastic system
according to a specified mission 1s given by:

M = performance criterion-given criterion limit =
g3, X,,...,2%) in which the X, (i = 1,...,n) are the n basic
random varables (input parameters), with g(.) being now
the functional relationship between the random variables
and the failure of the system. The performance function
can be defined such that the limit state, or failure surface,
is given by M = 0. The failure event is defined as the
space where M<0 and the success event 1s defined as the
space where M>0. Thus a probability of failure can be
evaluated by the following integral:

Pe = [ [ s (6o X Xy (1)

where {5 is the joint density function of x; X,,..., %, and the
integration is performed over the region where M<0.
Because each of the basic random variables has a umuque
distribution and they mteract, the mtegral (1) cannot be
easily evaluated. Two types of methods can be used to
estimate the probability of failure: The Monte Carlo
simulation and the approximate methods (FORM/SORM).

Direct monte carlo: Simulation techniques can be used to
estimate the probability of failure defined in Eq. (1) (or its
complement to 1, the reliability). Monte Carlo simulation
(Fig. 1) consists of drawing samples of the basic variables

A

Fig. 1: Reliability assessment by Monte-carlo simulation

according to their probabilistic characteristics and then
feeding then mto the performance function An estimate
of the probability of failure P; (Sundararajan 1995) can be
found by:

where N;is the number of simulation cycles in which g(.)
<0 and N the total number of simulation cycles. As N
approaches infinity, P; approaches the true probability of
failure.

The first and second-order reliability methods
(FORM/SORM) consist of 3 steps (Fig. 2):

+  The transformation of the space of the basic randem
variables X, X,,..., X, into a space of standard normal
variables.

¢ The research, in this transformed space, of the point
of minimum distance from the origin on the limit state
surface (this point is called the design point).

*  An approximation of the failure surface near the
design point:

FORM (First Order Reliability Method) consists in
approaching the surface of failure by a hyper plane
tangent to the failure surface at the design point
(Madsen et al., 1986). Then an estimate of the failure
probability is obtained by:

Py =Q(-p)

where @ 15 the cumulative Gaussian distribution of the
standard normal law. P the reliability index according to
Hasofer and Lind. The precision of this approximation
depends on the non-linearity of the failure surface.
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Fig. 2: Reliability assessment with FORM/SORM methods

If the linear approximation is not satisfactory, more
precise evaluations can be obtained from approximations
to higher orders of the failure surface at the design pomt.
The approximation by a quadratic surface at the design
point 15 called the SORM method (Second Order
Reliability Method) (Melchers, 1999). The corresponding
formula uses the knowledge of the (g-1) principal curves
k; of the failure surface at the design point:

N-1 1
B- = O(— —_—
0 O] O+ B

This result is known as asymptotically exact, in the
sense that the approximation of the failure probability
obtained is better for large reliability indexes. The
computing time 18 influenced by the calculation of the
matrix of the second-order derivatives.

The FORM and SORM methods are approximate
methods, but their accuracy is generally good for small
probabilities. The analytical properties enable the method
to yield relatively inexpensive sensitivity factors.
However, the basic random variables and the failure
function must be continuous. For small order
probabilities, FORM/SORM 15 extremely efficient,
compared to simulation methods.

PTM-FEM TECHNIQUE

The Probabilistic Transformation Methods (PTM)
evaluate the Probability Density Function (pdf) of a
function by multiplying the input pdf by the Jacobean of
the inverse function. The idea of PTM is based on the
following formula (Hogg and Craig, 1978).

e (u)
du

fr () =fp (p):[Ty 0| = £ (p)-

-
v
Tnput; PDF(), ) where y = R0c), y is
calculated using FEM

¥
Find
where x = f(y)
¥

Find| J|, determinant of the
Jacobean

v

Find PDF(y), using:
PDF(y) = [T .PDF(x)

Fig. 3: Algorithm of PTM-FEM

Where p is the input parameter, u is the response
(solution) and @~ '(u) is the inverse transformation, which
can be determined either analytically or numerically.

The PTM-FEM techmique, introduced recently by the
authors (Kadry et al., 2006, Kadry and Chateauneuf,
2006), is a combination between the finite element method
and the probabilistic transformation method. The steps of
the PTM-FEM technique are as following (Fig. 3): Using
FEM to get the stiffness matrix and the load vector. Once
we have the relation function between the mput and the
output, the inverse function is required to calculate the
determinant of the Tacobian transformation. Finally the
pdf of the output is equal the determinant of the Jacobian
multiplied by the pdf of the input.

The advantage of the PTM-FEM techmique in the
context of reliability analysis is the evaluation of the pdf,
of the response n a closed-form as opposed of other
numerical methods which give only the first and second
moment of the response under some conditions.

Nonlinear stiffness terms: In the practice, the problem of
nonlmearity in the structural stiffness matrix has been
always faced; The difficulty arises when the nonlinear
element is random. The proposed method in this situation
is to substitute the element of stiffness matrix by using
the Variable Changes Techmique which in turn allows us
to apply the PTM-FEM. The general term of stiffness
matrix can be expressed by:

m
k;j = AB" [z_ c;‘iJ
1

Let us consider the two principal cases (the other
cases, for example, for the sign m are similar):

=0
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In this case, the nonlinearity present in the numerator
of the element of stiffness matrix, 1.e., C? 1s random and
r>»1. It requires linearizing the numerator, to do that we
suppose §;=C; then by applying the PTM technique
the pdf of &,

N R
1
Again, we apply the PTM technique to get the pdf of
Y= Z & . Finally, we use the same procedure to find the
pdf of v,

<0
In this case, the nonlinearity appears in the denominator
of the Stiffness Matrix Term, 1.e., Cfi is random and r<1.
Tt requires linearizing the denominator, to do that we
suppose 8; =1/ C? then we apply the PTM technique
to get the pdf of

1
BZI'i

8L (80 = ———/8 Ef ()
again we apply the PTM techmique to get the pdf of

Y=28 . Finally, we use the same procedure to find the
pdf of y=.

Tllustrative example: If the Stiffness Matrix Term has the

following form of
_ Eili

1
Zig_i

and the random variables are the lengths (1) of the
analyzed structure, we then apply the same technique,
suppose for example

k.

1

and apply PTM to find the pdf of M, again we suppose
I. = EM, and find the pdf of I. and finally we suppose

T=—
L
and then we evaluate its pdf. In this case the term of
stiffness becomes linear in terms of the random variable
I =ELT then we can easily apply the PTM to find the pdf
of k..

Application: In this application, we analyze the reliability
of a twenty five-bar truss structure (Fig. 4) with random
parameters (Young's modulus E, cross section S or and
the horizontal load q).

The virtual work method allows us to calculate the
displacement at a point using the following formula:

n Ng
u=3y -1
=1 ES;

where N, is the normal effort due to the external load,
N, is the normal effort due to a unit load to the point and
in the direction of searching displacement, E is the
Young's modulus, 5, and L; are respectively the section
and the length of the bar i.

By symmetry, the cross sections of some bars are
identical. We adopt the following distribution as shown
inTable 1.

Table 2 represents the normal efforts on the bars.

The horizontal displacement uy, at the node 2 is

given by:

0 7850040221 4285580903
—+ + +
5 Sy Sy
y._d 73766125. 44 1. 464 698 375 x 10t° .
¥2 7 180000E S, Ss
6428099237
Se

with E the Young's modulus, q the Horizontal Load and 3,
the cross-section of bar 1.

Fig. 4: 25-Bar truss structure

Table 1: Cross sections of bars

Bar Section
1 S,
2,57.8 s,
34,69 Ss3
10,11,12,13 Sa
14,18,21,25 Ss
15,16,17,19, 20, 22,23, 24 Ss
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Table 2: Normal efforts on the bars

Bar  Vertical load  Horizontal load Fxl=1 Fyl=1 Fzl =1 Fx2=1 Fy2=1 Fz2=1 Length Li
1 118494 1.57898E-10 -0.44778 3.7646E-17 -0.116842 0.44778 3.76406E-17 -0.116842 18000
2 -182632 -108058 0.39318 -0.88916 0.4508 0.31882 -0.04387 -0.08319 25632
3 -103094 -181168 -0.48044 -0.65356 0.101654 -0.38958 0.053606 0.101634 31321
4 -103094 24564 -0.48044 0.65356 0.101654 -0.38958 -0.053606 0.101634 31321
5 -182632 236220 0.39318 0.88916 0.4508 0.31882 0.04387 -0.08319 25632
6 -103094 -34814 0.38958 0.053606 0.101654 0.48044 -0.65356 0.101634 31321
7 -182632 -227820 -0.31882 -0.04387 -0.08319 -0.39318 -0.88914 0.4508 25632
8 -182632 99670 -0.31882 0.04387 -0.08319 -0.39318 0.88914 0.4508 25632
9 -103094 191418 0.38958 -0.053606 0.101654 0.48044 0.65356 0.101634 31321
10 -2112.2 27160 0.021874 0.075444 -0.013032 -0.021874 0.075444 -0.013032 18000
11 25438 25416 0.142222 -7T.529E-17 -0.010987 0.140172 37646E-17 -0.071498 18000
12 -2112.2 -27160 0.021874 -0.075444 -0.013032 -0.021874 -0.075444 -0.013032 18000
13 25438 -25416 -0.140172 T7.5202E-17 -0.071498 -0.142222 0 -0.010987 18000
14 -261700 -84148 0.57096 -0.52328 0.3579%4 0.57524 -0.6071 0.022956 32031
15 -142550 -129638 -0.147116 -0.034886 -0.041108 -0.154788 -0.54426 0.24192 43474
16 -136254 138918 0.2779 0.17921 0.17797 0.27976 0.1226%4 0.009951 43474
17 -142550 -78852 0.154788 -0.54426 0.24192 0.147116 -0.034886 -0.041108 43474
18 -261700 -322780 -0.57524 -0.6071 0.022956 -0.57096 -0.52328 0.35794 32031
19 -136254 -30232 -0.27976 0.122694 0.009951 -0.2779 0.17921 0.17797 43474
20 -136254 -70148 -0.27976 -0.122694 0.009951 -0.2779 -0.17921 0.17797 43474
21 -261700 116470 -0.57524 0.6071 0.022956 -0.57096 0.52328 0.35794 32031
22 -142550 133194 0.154788 0.54426 0.24192 0.147116 0.034886 -0.041108 43474
23 -136254 -38530 0.2779 -0.17921 0.17797 0.27976 -0.12269%4 0.009951 43474
24 -142550 75296 -0.147116 0.034886 -0.041108 -0.154788 0.54426 0.24192 43474
25 -261700 290460 0.57096 0.52328 0.35794 0.57524 0.6071 0.022956 32031
_A4 u
uyz—ﬁ(184918.7) ‘2[—1ogy2—1og3j, é<uy2<é
uZ, A 4 3
. . A A
We suppose that the young's modulus £ 1s umformly T(log 4-1log3), — Uy, <—
distributed in the range [1, 2] and the cross-section fuyg (Uyp) =1 Uy2 6

S 1s uniformly distributed m the range [3, 4] We
notice the nonlinearity in the response expression (u,)
in terms of E and S. using our proposed technique of

A u A A
— 310g2+10gi2 T
ul, A 8 6

A =184918.7q

linearization te linearize u, Let M = ES, using our

proposed technique (PTM-FEM) to evaluate the pdf Numerical values: q = 18N,

of M leads to:
pdffu,) when E and § uniformly distributed
logM—-log3, 3<M<4 <107 + Monte-Carlo
fy(M)=1logd—1log3,  4<M=<6 337 . :%:%

3log2—logM, 6<M<8

Again, let us suppose now N = 1/M, the PTM-FEM
applied for N gives:

#(—logN—logﬂ, i<N<%
fg(N)= L(10g4710g3), l<N<l
N? 6 4 12
1 1 1 w,
F(310g2+10gN), §<N<g
Reliability analysis: Let us suppose now the allowed
displacement is u,, it is requested to find the failure
Finally, the pdf of using PTM-FEM technique: probability Py =P(uzug,), which is as follows:
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® 1849187.2
Pf:.‘-g fu,, Uy )dugy = ———
uy2
y
—log————=———1og3 |=0.14
{ Slsao1s72 ¢ J

This result is confirmed by 10000 Monte Carlo simulations
giving 0.1396.

pdf{u,) when E and § uniformly distributed

X107
3.51
* + Monte-Carlo

3 +* ——PTM-FEM

— PTM-FEM
2.54
2 7
g 1'5 -

1+

0.5

CONCLUSION

In this article, a technique for the evaluation in
exact form of the probability of failure i1s developed.
Compared to other numerical methods like FORM/SORM,
Monte-Carlo and Response surface method, no-series
expansion is nvolved in this expression. Our method
1s validated using 10000 Monte-Carlo simulations through
the analysis of 25-bar truss structure with random
parameters.
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