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Abstract: Vibration based damage identification in a structure is based on the observation that damage causes
changes in its dynamic characteristics, such as, frequencies and mode shapes. There are a number of Vibration
Based Damage Identification (VBDI) algorithms which utilize change in vibration characteristics in a structure
to determine the location and severity of possible damage. This article presents the development of a Finite
Element (FE) program that implements the three dimensional beam and plate-shell elements and some of the
vibration based damage identification algorithms. The FE system developed herein 1s also capable of performing
model updating using the measured modal parameters such the natural frequencies and mode shape vectors.
A three span continuous bridge i Canada has been presented as a case study. The three dimensional FE model
of the bridge was correlated to the actual structure by updating the model with modal test data and the updated
model 15 used for damage 1dentification using simulated damage scenarios. The fimte element system developed
herein has been found to be robust and the VBDI algorithms, m spite of their sensitivity to incomplete modes

and measurement noise, provide important clues about the location and severity of damage in a structure.

Key words: Finite element method, structural health monitoring, vibration based damage identification

INTRODUCTION

Vibration based damage 1dentification m a structure
15 based on the observation that damage causes changes
m the dynamic characteristics, such as,
frequencies and mode shapes of the structure. There are
a number of Vibration Based Damage Identification
(VBDI) algorithms which utilize the change in vibration
characteristics of a structure to determine the location and
severity of possible damage. Commercial Finite Element
Analysis (FEA) packages do not provide enough

natural

flexability to customize and incorporate the VBDI
algorithms. This paper presents the development of a FEA
system which implements some of the VBDI algorithms.
There are many challenges m the application of VBDI
techmques as the measured values of the natural
frequencies and mode shapes of a structure often contain
random measurement errors. Finite element model of a civil
engineering structure, such as a bridge or a dam, often
contains a large number of degrees of freedom. However,
only a limited number of sensors could be used for
measuring the mode shapes which lead to an incomplete
definition of a mode shape. Tt is sometimes possible to
obtain the complete mode shapes from the incomplete

ones obtamed from field measurements, using some kind
of modal expansion techmque. This introduces additional
error to the mode shapes. The mcompleteness of mode
shapes and random measurement errors degrade the
performance of VBDI algorithms. Environmental effects on
the structure’s behavior also affect the performance of
damage detection algorithms.

The FEA system developed here is designed to
construct finite element model of a structure using three
dimensional beam and shell elements, correlate the model
based on measured vibration quantities and simulate
various damage scenarios. Based on a given distribution
of the sensors in the structure, the performance of the
damage detection algorithms implemented in the software
can be studied by considering the mcomplete modes of
the damaged structure and sunulated
measurement errors. Further work 1s necessary to model
environmental effects.

The FEA system presented here has been developed
inthe MATLAB (2006) environment, which is a powerful
tool for mathematical programming and quick prototyping.
MATLAB is chosen here to take advantage of the
availability of the functions for matrix operations,

random

optimization and graphics. However, the programming
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languages provided with the MATLAB environment is
wterpretive in nature and it slows down the system when
the problem size 13 very large (Bagchu, 2005).

The study also presents a study on a tlwee span
continuous steel free deck bridge located in Calgary,
Canada. The bridge, opened to traffic in 1997, was
constructed under the technical leadership of ISIS Canada
Research Network and a number of sensors were installed
in the bridge. Although the present study focuses on
computer simulation, some data from the dynamic tests
conducted on the bridge are also used.

VIBRATION BASED DAMAGE IDENTIFICATION

A number of techniques for vibration based damage
identification are available in the literature (Humar ef al.,
2006). They include (a) methods based on frequency
changes, (b) methods based on mode shape changes, (¢)
mode shape curvature method, (d) methods based on
change in flexibility matrix, (¢) methods based on changes
in uniform flexibility shape curvature, (f) strain energy
based damage index method, (g) method based on modal
residual vector, (h) matrix update methods and (i) semi
analytical techniques, such as, neural network, genetic
algorithm and statistical methods. Here, the strain energy
based damage mdex method and the matrix update
methods are used for thewr relative effectiveness as
explained i Humar ef al. (2003 and 2006).

Method based on modal strain energy: This method as
originally developed by Stubbs ef al. (1995) 15 applicable
to beam type structures and is based on the comparison
of modal stramn energy before and after damage. The
method can be extended to a structure of a general type.
For the healthy structure the modal strain energy of
member j in mode I is given by ¢"k; and the total strain
energy of the structure deforming in its mode T is obtained
from

8 = X o7k, = 07K, (1)

where k; is the stiffness matrix of member j and K is the
stiffness matrix of the structure. Similar expressions can be
formed for the damaged structure. However, in deriving
the strain energy of the damaged structure, S%, the global
stiffness matrix of the damaged structure K* is taken as
being approximately equal to K. This 1s based on the
reasoring that in practice only a few members are likely to
suffer damage. The strain energy fractions of member j in
mode I for the undamaged and damaged states, f; and {%,
respectively, are given by:

T
k.d.
f :d)l % and fijd:

" ¢Ko,

U
¢1dT K(])d (2)

1

The ratio of the strain energy fractions as expressed
in Eq. 3 is defined as the damage index for the j™ element
in mode I. When the information available from nm
measured modes 1s used the damage mdex 1s given by

Y= ;f;/gfij (3)

Members for which vy, is relatively large are likely
to have been damaged. This provides the location of
damage. Numerical problems may arise in the evaluation
of Eq. 3 when the denominator s very small in
magnitude, which may be the case when the strain energy
contributed by the jth member in the modes bemng
considered 15 very small. In such a case a modified
damage index, 7v;, for element j, as shown in Eq. 4
can be defined.

F RN STy I W

Matrix update methods: The matrix update methods
constitute the largest class of methods developed for the
identification of damage from measured vibration
properties. The methods are based on the determination
of perturbations in the property matrices caused by
damage. The property matrices include the stiffness matrix
K and the mass matrix M. The method as developed by
Kabe (1985) has been briefly described here. For the
undamaged structure the property matrices satisfy the
following eigenvalue equation

K¢, = A, Mo, (5)

where ¢, 1s the ith mass-orthonormal mode shape and 4,
is the associated eigenvalue (squared frequency). Damage
in the structure may change both the stiffness and the
mass matrices, altering the frequencies as well as the
mode shapes. The eigenvalue equation for the damaged
structure is given by:

(K +BK)(0, + 80 ) = (A, + 82 (M + 8M)($, +66.) (6

Assuming that damage does not alter the mass matrix
and using Eq. 6, we get:

K86, + 6Kd, = LMo, + 84, Mo, (7
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where ¢y = ¢, + 8, is the ith mode shape of the damaged
structure. Pre-multiplying both sides of Eq. 7 by ¢"; and
using the transpose of Eq. 7 we get:

9:Kbs ) (&)

;Mo 1
Perturbation matrix 8K can be expressed as

8K =3 kp, 9)

where P is the damage factor for element j. Using Eq. 8
and 9 and assuming that ¢; contain mass ortho-
normalized mode shape vectors, we get

Sh=—3" 0uk04B, (10)

or Dp= -84 (1)

where ne 13 the number of members and D 13 an m by ne
matrix, P is the ne-vector of the unknown changes in
element stiffness matrices and 84 is the m-vector of
measured eigenvalue changes.

Solution of Eq. 11 provides both the location and
severity of the damage. Tn general the number of unknown
parameters in that equation is significantly greater than
the number of measured frequencies and mode shapes;
the problem is therefore under-determined and has an
infinite number of probable solutions. A unique solution
can be obtained through the minimization of an objective
function subjected to appropriate constraints. In the
present study, the objective function to be minimized is
chosen to be the quadratic norm of the stiffness changes
given by Eq. 12, subjected to the constraint specified in
Eq. 13.

T=pB (12)
0<p <l (13)

The problem now becomes a nonlinear optimization
problem. In the present work, it is solved using the
Sequential Quadratic Programming (3SQP) method.
Gill et al. (1981) provide an overview of the SQP methods.

M-FEM program structure

Description: M-FEM has been implemented in MATLAB
for 1ts simplicity and the availability of a number of basic
functionalities for matrix operations, optimization and
graphics. The programming environment in MATLAB is
mterpretive or scripting based, unlike other computer

languages like FORTRAN or C/CH++ which needs the
program to be compiled before running. MATLAB code
or program does not need to be compiled. The
programming errors are detected at runtime. For fast
prototyping of an algorithm, MATLAB 1s a useful tool.
However, 1t provides flexibility in programming and
debugging at the cost of computing efficiency.

The basic structure of the M-FEM system is given in
Fig. 1. The program has a modular structure with following
basic functionalities (a) Static Analysis (b) Modal
Analysis (¢) Vibration Based Damage Identification

Element library: The element library in M-FEM includes
a three dimensional beam element and a facet plate-shell
element as shown i Fig. 2a and b, respectively. The plate-
shell element is formed using the DKT plate bending
element (Batoz et al., 1980) and a triangular plane stress
element. The DKT plate element has three degrees of
freedom (DOF) per node (Fig. 2e), two rotational DOFs
(6, and 6,) about the orthogonal horizontal directions and
a translational DOFs (w) along the vertical direction.
When combined with a triangular plane stress element,
the plate bending element results 1 a facet shell element.
The resulting shell element requires six DOFs per node as
shown in Fig. 2b. Of these six DOFs, three are contributed
by the DKT plate bending element and three must come
from the plane stress element. Two versions of the plane
stress element have been implemented in M-FEM:

Input the structure geometry, Element library (3D beam and
boundary conditions, material facet shell elements)
properties, element types and

connectivity details

Input loading : .
information Graphical view

Build the model of the model

Static analysis

h 4

T - Perform model Graphical view
Graphical view of the| T
deformed shape analysis of mode shapes
L J
Input the measured Model updating
frequencies and mode and correlation
shape vectors
Simulated
damaged model
VBDI glgorithms
Plot the locations| : :
and severrity Damage location and severity

Fig. 1. M-FEM system architecture
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Fig. 2: M-FEM element library

¢ The Constant Strain Triangle (CST) with two Degrees
Of Freedom (DOF) per node corresponding to the in-
plane displacements as shown in Fig. 2¢ (Zienkiewicz
and Taylor, 1989),

¢ The plane stress triangular element with three
DOFs per node, two corresponding to the in-plane
displacements and the other corresponding to the
vertex rotation or drilling DOF as shown in Fig. 2d
(Allman, 1984). This plane element is also referred in
this study as the Allman’s triangle and linear stress
triangle with drilling DOF (LSTD) element.

Since the CST element has only two DOFs (u and
v n x and y directions, respectively) per node, the
resulting shell element has zero stiffness associated
with the remaining DOF corresponding to the rotation
about the z axis (8,) or the drilling DOF and in the case of
DKT-CST combination, a small stiffness of arbitrary
magnitude may need to be added to the drilling DOF to
avoid numerical difficulties when some of the adjacent
elements are co-planar. Unlike the CST element, the
dnlling DOF stiffness arises naturally in the LSTD element
and no adjustment 1s necessary for adjacent co-planer
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elements. Therefore, DKT-LSTD element has been used
1 the case studies presented here.

A quadrilateral plate-shell element is formed by
combining two triangular elements as shown in Fig. 2f. In
case of the CST element, a small stiffness corresponding
to the drilling DOF needs to be added in order to
construct the plate-shell element with six DOFs per node.

Operation of the software: The M-FEM software works
partially m batch mode and partially in interactive mode.
The data about the structure’s geometry, material
properties, load and boundary conditions, semsor
locations, the extent of measurement noise and the
damage simulation scenario are provided i a data file in
text format. The software reads the data and builds the
mathematical model of the structure. After that the user
needs to interact with the software based on a number of
choices about the damage identification algorithms,
plotting various results, viewing the structure’s geometry
and mode shapes, using mcomplete and noisy modes of
the damaged structure, convergence criteria for model
updating etc. The model once bult by M-FEM resides in
MATLAB workspace and the can be re-run with various
damage conditions or measurement noise without re-
building the base model. This saves time significantly
when the analysis needs to be re-run with the same base
model of the structure. The performance weakness of
MATLAB 1s compensated m this case. M-FEM also
utilizes a MATLAB feature to save the workspace for
future use, 1 case a few more cases of sumulations need
to be done later using the base model of the structure
already developed by M-FEM.

Validation: A number of structures involving 3D beam,
plate, shell and a combination have been modeled with M-
FEM and COSMOS (1995) to compare the static and
modal analysis results. COSMOS implements the shell
element as a combination of DKT plate bending element
and Allman’s plane element. For validation of M-FEM, the
global stiffniess and mass matrices for a number of simple
problems, not shown here to conserve space, have been
obtained from both M-FEM and COSMOS for
comparison. The coefficients of the global stiffness and
mass matrices formed by M-FEM and COSMOS have also
been compared and which have been found to have very
little or no difference. After the comrectness of the
stiffness and mass matrices are established, the VBDI
algorithms have been implemented on top of it.

CASE STUDY: THE CROWCHILD BRIDGE

The Crowchild Bridge located in Calgary, Alberta,
Canada, is a two-lane traffic overpass with three

continuous  spans. The details of the bridge
superstructure are shown in Fig. 3. The superstructure 1s
said to be the first continuous-span steel-free bridge deck
1in the world (Bakht and Mufti, 1998). It 15 composed of
five longitudinal steel girders (900 mm deep), a
polypropylene fiber reinforced concrete slab deck and
prefabricated glass fiber reinforced concrete barriers. The
five longitudinal girders are spaced at 2 m. Four evenly
spaced cross-frames in each span and steel girder
diaphragms at the supports hold the main girders in place.
The main girders are also connected by evenly spaced
steel straps placed across the top of the girders to provide
lateral restraint to them. The girders and straps are
comected to the deck slab by stainless steel stubs. The
deck is 9030 mm wide and does not contain any internal
steel remforcement. The slab thickness 1s 275 mm along
the girders and 185 mm elsewhere. A monitoring program
for the bridge has been developed by ISIS Canada. Static
and ambient vibrations tests have been conducted on the
bridge by a team from the Umversity of British Columbia
in 1997 (Ventura et al., 2000) and a team from the
University of Alberta in 1998-99 (Cheng and Atfhami,
1999).

An analytical model of the Crowchild Bridge 1s
constructed using three dimensional beam elements for
the piers, girders, diaphragms and the cross frames
including the steel straps and shell elements for the deck
and side barriers. The deck elements are connected to the
girder elements by rigid beam elements. The piers are
assumed to be fixed at their base, while roller and pin
supports are assumed to exist at the north and south
abutments, respectively. The FE model contains 351
elements, 247 nodes and 1399 active degrees of freedom.
The density of steel and concrete is assumed to be 76 and
24 KN m™, respectively. The concrete compressive
strength 1s taken as 35 MPa. The modulus of elasticity for
concrete is assumed to be 30 GPa for the deck and 27 GPa
for the barrier and pier; for steel it i1s assumed to be
200 GPa. The FE model of Crowchild Bridge is shown in
Fig. 4a and the damage area assumed for computer
simulation is shown in Fig. 4b.

Imitially, the concrete 1s assumed to be un-cracked.
The model that is based on this assumption is updated
and correlated with the data obtained from vibration test
conducted in 1997 by the University of British Columbia
team (Ventura ef al., 2000) and is used as the base model
for the undamaged structure as of 1997. This model will
be referred to as CC-97 model. The first four natural
frequencies were reported to be 2.78, 3.41, 3.44 and
3.89 Hz. The model update and correlation were carried
out by using the optimization process defined by Eg. 10
and 11. During the process of model updating, the
stiffness coefficients of individual elements are modified
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Fig. 3: Details of the Crowchild Bridge (a) west elevation, (b) Cross section

to fine tune the resulting modal frequencies of the system.
The mode shapes of the undamaged structure derived
from model CC-97 are shown in Fig. 5.

Field test conducted by the Umniversity of Alberta
team in 1998-99 (Cheng and Athami, 1999) revealed that
the frequencies of the bridge reduced slightly due to some
cracking of concrete. To consider the effect of cracking
the stiffness of the concrete elements 1s reduced and the
model is correlated with the 1999 test results. The
stiffness of deck elements is assumed to be 90% of un-
cracked stiffness in the positive moment region and 70%
i the negative moment region. The stiffness of the barrier

2000

is assumed to be 80% in the positive moment region and
70% in the negative moment region. The pier stiffness is
reduced by 10%. The correlated base model will be
referred to as CC-99. The natural frequencies at this stage
were reported to be 2.60, 2.90, 3.63 and 3.85 Hz. The mode
shapes are similar to those of CC-97 (Fig. 5).

The vibration based damage identification techniques
implemented in M-FEM has been studied by applying the
techniques to detect simulated damage in the bridge
models. The damage is assumed to be concentrated in the
area 1dentified m Fig. 4b. The following scenario is
considered: the longitudinal girders (corresponding to
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Fig. 4: (a) The Finite Element model of Crowchild Bridge

Fig. 5: Mode shapes: {(a) mode 1, (b) mode 2, {c) mode 3 and (d)y mode 4
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element numbers 174, 177, 180, 183 and 186 in the finite
element model) suffer 70% damage. The damage
magnitude of 70% is rather high, but it is chosen only to
demonstrate the program. The damage simulated herein
by reducing the stiffness of the corresponding elements
in the model. The mode shape and frequencies obtained
from the damaged model by modal analysis. In practice
however, such frequencies and mode shapes would be
obtained from modal tests.

The experimental frequencies and mode shapes
obtained from the modal tests are often affected by
random measurement noise. Another factor to be
considered is that the finite element model usually
contains a large number of degrees of freedom, but in the
field only a limited number of sensors could be deployed.
In addition, measurement of rotational degrees of freedom
is not practical. Thus, only a few translation degrees of
freedom are measured and the experimental mode shapes
are far from complete. This implies that either the
incomplete mode shapes need to be expanded to the full
size of the finite element model, or the finite element model
is condensed to the measured degrees of freedom.

In the present study, incomplete mode shapes are
constructed by selecting those elements of the analytical
damaged mode shapes that correspond to a set of degrees
of freedom along which measurements would be probably
be made during a field test. The incomplete mode shapes
are corrupted by adding a small amount of random error to
simulate the noise in measurement, they are then
expanded using a method proposed by O’Callahan et al.
(1989) to obtain a complete set of mode shapes for the
damaged structure. In this study, the incomplete mode
shapes have been generated assuming that all three
translation degrees of freedom at every node have been
measured, while in practice, perhaps fewer degrees of
freedom would be measured. To simulate the random
measurement noise, the eigenvalues and mode shapes of
the damaged structure are corrupted by a random noise of
0.5 and 1%.

Figure 6 and 7 show the damage identification results
for CC-97 model. It is observed from Fig. 6a that the
damage index identifies the damage locations correctly
when complete and noise free mode shapes of the
damaged structure are used. Figure 6b and ¢ show the
severity of damage as expressed by damage factors (
vector in Eq. 11) evaluated using the matrix update
methods. Estimates of B obtained from Eq. 11 by taking
the pseudo inverse of D provide rough estimates of the
severity of damage and are shown in Fig. 6b. It should be
noted that in this case B can take negative values. The
solution of Eq. 11 obtained from the optimization of the
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Fig. 6: Results for the CC-97 model with complete and
noise free modes of the damaged structure-(a)
Damage index, (b) Damage factors by pseudo
inverse solution of Eq. 11 and (¢) Damage factors
by optimized solution of Eq. 11

objective function in Eq. 12 with the constraints defined
by Eq. 13 give a very good measure of the damage extent
(Fig. 6¢).

Figure 7 shows the damage indices and damage
factors CC-97 model with noisy (E1) and incomplete mode
shapes (M1). Determination of the location and the extent
of damage are affected both by the measurement errors
and incomplete modes. The general area of damage is
identified correctly, while the severity of damage is not as
accurate. The pseudo-inverse solution produces the
damage factors similar to that in Fig. 6, while the optimized
solution of Eq. 11 produces spurious damage in some
elements, which, of course, can be eliminated when the
damage indices in Fig. 7a are considered.
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From the results of damage identification for CC-99
model with incomplete and noisy modes, not shown here
to conserve space, it is observed that the damage index
method identifies the damage location quite effectively,
but the estimates of the damage extent by matrix update
method are not very good. However, when the results of
the damage index method and the matrix update method
are considered together, it is possible to get important
clues about the severity and location of the damage.

DISCUSSION
A finite element analysis system, M-FEM for

vibration based damage identification in structures has
been developed in the MATLAB environment. M-FEM

utilizes the flexibility of the MATLAB framework and the
availability of many useful functions necessary for a FEM
system. Although software built using MATLAB
performs poorly as compared to that developed in a
compiler-based language like FORTRAN or C/C++, the
efficient use of MATLAB workspace can be
advantageous when it is necessary to re-use the base
model built using M-FEM.

Vibration based damage identification is a useful tool
for structural health monitoring. In the past its success
has been demonstrated by applications in the damage
detection of simple structures. However, its application to
real life and complex civil engineering structures is still
beset with considerable challenge. The first challenge
manifests itself in creating a realistic mathematical model
of the structure. This is because structural properties,
such as the effective moment of inertia and modulus of
elasticity, are quite uncertain and variable, especially in
structures built from reinforced concrete where concrete
cracking and quality of concrete may have a marked
influence on the physical properties. Most modeling
attempts, including those used in the present study, use
arbitrary estimates of the effective moments of inertia,
based on engineering judgment. Correlation of a model
which must be based on such choices often requires
unrealistic adjustments in the element stiffness
coefficients, even when the differences between the
analytical and experimental frequencies are small. In the
present case, such adjustments could be kept within
reasonable bounds only after the selection of the physical
properties was fine tuned by a process of trial and error.

Other challenges include the practical limitation on
the degrees of freedom along which modal measurements
can be made, the number of modes that can be measured
and the measurement errors that are inevitably present in
field tests. As shown here all of these have profound
impact on the success of damage identification. In the
present study, in order for the methods to succeed,
measurements were required along all of the translational
degrees of freedom.

Of the many VBDI techniques available only two are
used here because of their relative merit in comparison to
others. The results obtained form these methods show
that in spite of all of the problems, VBDI methods may be
successful n identifying at least the location of damage
in a structure, such as the Crowchild Bridge. It is generally
not possible to detect damages of small magnitudes
through VBDI techniques since the changes in modal
properties due to small amounts of damage are not
appreciable. Also, if the modal strain energy contribution
of an element is very small, even a large degree of damage
in it could not be detected by the VBDI techniques.
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Finally, it should be noted that computer simulation
studies can not quite predict the effect of environmental
factors, such as temperature changes, changes in
boundary conditions and nonlinearities caused by the
opening and closing of cracks and slip in bolted joints.
These are potential areas of further research.
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