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Effect of the Logarithmic Transformation on the Trend-cycle Component
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Abstract: In this study we present some solutions to the problems encountered when a time series
multiplicative model 1s linearized by taking the natural logarithm of the observed series. Problems associated
with the trend-cycle component, with a view to achieving no alteration (if possible) to the fundamental nature
of the original data, are discussed for a class of trending curves which includes the linear, quadratic and
exponential growth curves. Necessary and sufficient conditions are derived for the parameters of the linear and
quadratic curves. Numerical examples are given to illustrate the results obtained.
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INTRODUCTION

A general multiplicative model for descriptive time
series analysis would be of the form

X, =T 8 CI,t=12_..n (1)

where, for time t, X, denotes the observed value of the
series, T, is the trend, S, the seasonal term, C, the cyclic
term and T, 1s the mregular or random component of the
series. If short period of time are wmvolved, the cyclical
component 1s superimposed into the trend (Chatfield,
1980) and we obtain a trend-cycle component denoted by
M.. The model (1) will be regarded to be adequate when
the irregular component is purely random. For our
purposes, I, to be denoted by e, are mdependent,
identically distributed normal errors with mean 1 and
variance o) > 0[1, =, ~ N(1, 6.)]. Model (1) can then be
written as
X, =M, 8 ¢.,t=12,...,n (2)
Descriptive modeling of the multiplicative time series
model (2) generally involve the loganthmic transformation.
Upon linearization of (2), we obtain

log X, =log M, +log S, +log_ e, t=1,2,...,n (3)

or
Y, = M, + 8 +¢.t=12..,n (4)
where Y, =log, X,, M, =log M,,S. = log_S, ande, = log_e,. It

1s important to note that (4) 1s the additive time series
model.

Cogent reasons for utilizing data transformation, such
as the logarithmic transformation of (4), are given in Hoerl
(1954), Dolby (1963), Bond and Fox (2001 ) and Osborne
(2002). Osborne (2002) wamed that the use of data
transformation must be done with care and never, unless
there 1s a clear reason, because data transformations can
alter the fundamental nature of the data, such as changing
the measurement scale from mterval or ratio to ordinal and
creating curvilinear relationships, thereby making
interpretation of results somewhat more complex.

The logarithmic transformation (4) obviously alters
the fundamental nature of the multiplicative model (2). For
the multiplicative model (2), it is convenient to assume
that the sum of the seasonal components over a complete
period is s. That is,

38, = s (3)

where s 15 the length of the periedic interval. For the
additive model (4) the convenient variant assumption 1s
that the sum of the seasonal components over a complete
period is zero. That is,

Zs“sm =0 (6)
1=1

For the additive model (4), the variant assumption on
the random component e is that they are independent,
identically distributed normal errors with mean zero and
G2>0[e, ~N(0, 62)] (2006), has
established that the variant assumptions for the error term
e, are valid if and only if 6, <0land 6, = 5,.

variance Iwueze
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For most trending data it is common practice to fit a
simple curve, such as exponential, straight line or
quadratic curve through the data (Levenbach and Reuter,
1976). For data tending to some saturation level, the
Gompertz and logistic curves have found widespread
applications (Chaddha and Chitgopekar, 1971). The
umportant curves for the trend-cycle component are:

Linear: M, =a+bt (7)
Quadratic: M, = a+bt+ct’ (8)
Exponential: M, = ae®’ )
Modified exponential: M, = a+be” (10)
Gompertz: log, M, = a— be”, ¢<0 (1)
Logistic: M, =a/l+be™ (12)

Naturally, the logarithmic transformation of growth
curves must alter the fundamental nature of the
original data.

This study mvestigates the effect of the logarithunic
transformation on the simple trending curves (exponential,
straight line and quadratic curves) with a view to
achieving no alteration (if possible) to the fundamental
nature of the original data.

LOGARITHMIC TRANSFORMATION OF
THE TREND-CYCLE COMPONENT

The motivation for this study on the effect of the
logarithmic transformation on the trend-cycle component
stems from the fact that if a trend-cycle component is
exponential, the square root transformation does not alter
the fundamental nature of the data as it will still be
exponential. That is, if M, is given by (9), then

bt

1
M, = M, =ate? = ae" (13)

where (I.:\/Z,B:b/Q.

Naturally, the logarithmic transformation of the trend-
cycle component will: (1) be a linear function for the
exponential trend curve (9) and (2) a logarithmic function
for the other growth curves under study. Therefore, can
we achieve the same feat-retaining the original form-after
taking the logarithmic transformation of the linear and
quadratic trend-cycle growth curves? The answer is
ves, provided necessary conditions are placed on the
parameters of the original curve.

Straight line curve: For the straight line curve, (7), we
assume that

M, = log,(a+bt) = o+ pt (14)
= atbt= ™" = &" {Hﬁt + %+ B;[a .. (5
Equating corresponding coefficients, we obtain
e*=a=0a=Ilog.a,ax>0 (16)
pe*=b = B=bla, a0 (17
Let
Afa,b) = b/a, a>0 (18)

The coefficients of 1%, t, t*, ... in(14) are quantities
that depend on A(a, b) but vanishes more quickly than
A(a, b) as A(a, b) = 0. These coefficients are said to be
little o of A(a, b) *, written O (A(a, b)) (Tuckwell, 1988).
That 1s,

e'“‘“:a+bt+0(A(a,b)) (19)

For example, (A(a, b)), d=2, 3, ... is 0 (A(a, b)). That
15, as (A(a, b)) = 0, Eq. 14 will be satisfied. This 1s vividly
illustrated in Table 1 for n = 100 data points. The
coefficient of the multiple determination, R?, is the square
of the correlation between M, = log, (a+bt) and
M = o +pt with0 < R* <1 (Draper and Smith, 1981). A
perfect fit to the data for which M’ = M! would give
R’=1 which from Table 1 means
—0.004 < A(a,b)=0.007. However, allowing R’ =099,
we obtain that —0.006 <A(a,b)=<0.01. For R*>0095,
~0.008 <A(a,b)<0.06 holds. We will concentrate on
R’ > 0.99 in this study.

Quadratic curve: For the quadratic curve, (8), we assume
that

Mtzlogg(a+bt+ct2) = a+pt+yt? (20

2
= a+ bt+ ct? = =Pt

) o (Btet) (Bret) (Brent)
=@ 1+(Bt+yt)+( o ) :( Y ) :( m )

(21)

That 1s,

2415



J. Applied Sci., 7 (17): 2414-2422, 2007

Table 1: Computations illustrating changes/non-changes in form of the Equating corresponding coefficients, we obtain
linear curve ’

M, = log, {(a+bt) = wt+pt

e*=a=a = log,a,ax0 (23)
Assumed values  Theoretical Estimated
a b x=loga B=ba & A 5 R? Pe*=b=p="D/a, a>0 (24)
1.0000  1.0000 00000 1.0000 23183 0.0270 0.348 83.7
1.0000  0.9000 00000 02000 22253 0.0269 0.342 840 5 3
1.0000 0.8000 00000 08000 21226 0.0267 0336 843 G{B_ . Y} o= So l[k] a0 (23
1.0000  0.7000 00000 07000 20078 0.0265 0.328 8.7 2 a 2l g ?

1.0000  0.6000 0.0000 0.6000 1.8778 0.0262 0.319 852
1.0000  0.5000 0.0000 0.5000 1.7278 0.0258 0.306 858
1.0000  0.4000 0.0000 04000 1.5502 0.0252 0.290 86.6

L0000 0.3000 00000 0.3000 13324 00244 0266 87.7 Now we need some sullicient conditions for Eq. 20

1.0000 0.2000 00000 02000 1.0497 00230 0231 894 to hold. We obtain these by equating the coefficients of
1.0000 01000  0.0000 01000 0.6440 0.0199 0165 92.5 £t €. . in (22) to zero. Derived conditions are
1.0000  0.0900 00000 0.0900 0.5918 0.0194 0155 93.0 i o :

1.0000 0.0800 00000 0.0800 05365 00187 0144 93.5 obtained by substituting values of &,  and vy given by
1.0000  0.0700 0.0000 0.0700 04778 0.0180 0132 9.0 (23), (24) and (25), respectively. After the relevant
1.0000 0.0600 0.0000 0.0600 04153 00171 0.118 94.7 o - : - _
1.0000 0.0500 0.0000 0.0500 03487 0.0160 0.103 954 substitutions, we will obtain a pOIynomlal of orderp =1,
1.0000 0.0400 0.0000 0.0400 072775 00147 0.086 96.2 2. 3, ... whose real zeros must be determined. Real zeros of
10000 0.0300  0.0000 00300 0.2019 00128 0.065 97.1 order greater than two are obtained by graphical methods
10000 0.0200  0.0000 00200 ©.1230 0.0105 0.043 981 .

1.0000 0.0100  0.0000 0.0100 0.0464 0.0068 0.018 99.2 only.

1.0000 0.0090  0.0000 0.0090 0.0395 0.0063 0.015 993
1.0000 0.0080 0.0000 0.0080 0.0329 0.0056 0.013 994
1.0000  0.0070  0.0000 0.0070 0.0265 0.0052 0.010 99.5 . e [
1.0000  0.0060  0.0000 0.0060 0.0206 0.0047 0.008 99.6
1.0000  0.0050 0.0000 0.0050 0.0152 0.0040 0.006 99.7
1.0000 0.0040  0.0000 0.0040 0.0103 0.0033 0.004 998

1.0000  0.0030 0.0000 0.0030 0.0062 0.0026 0.003 99.9 b? b?
1.0000 0.0020 0.0000 0.0020 0.0030 0.0018 0.001 99.9 Y (26)
1.0000  0.0010 0.0000 0.0010 0.0008 0.0010 0.000 100.0 3a a

1.0000 0.0009 0.0000 00009 00006 0.0009 0.000 100.0
1.0000 -0.0009  0.0000 -0.0009 0.0007 -0.0009 0.000 100.0
1.0000 -0.0010 0.0000 -0.0010 0.0009 -0.0011 0.000 100.0 BBy o B By o b
1.0000 -0.0020  0.0000 -0.0020 0.0041 -0.0022 0.002 99.9 s P PY Y g [P P Y g2
1.0000 -0.0030 0.0000 -0.0030 00101 -0.0036 0.005 998 2 2

1.0000 -0.0040  0.0000 -0.0040 0.0201 -0.0051 0.010 99.6
1.0000 -0.0050 0.0000 -0.0050 0.0354 -0.0068 0.018 992

1.0000 -0.0060 0.0000 -0.0060 0.0385 -0.0090 0.031 98.5 + (b b
1.0000 -0.0070 0.0000 -0.0070 0.0936 -0.0116 0.052 97.7 o= —| — |=+041 — (27)
1.0000 -0.0080 0.0000 -0.0080 0.1492 -0.0149 0.089 96.0 Jol a

1.0000 -0.0090  0.0000 -0.0090 0.2470 -0.0199 0.164 92.5
1.0000 -0.0100 0.0000 -0.0100 0.4693 -0.0289 0.414 80.1

s is the estimated standard deviation about the regression line; R? is the . 0{ BS B3 ¥ BY2 J _ [ B4 . BZ v .},2 j o

coefficient of determination

U_+Et+'yt2

2 3 2 1 2 bz b4 _
L B?”}Z {%*Byj [2 Bz_y Y?}t 7 (2a2 © ) e
5 2
Y By |5 B By Y i 2 :
t L - b b
[120 6 2 J [720 1 6 =¢ = 0.23[3} or ¢ = 0.44[3} (28)
i +m+
[ B, By, P BY} L 40320 20 | B Py e o
| —t—t +—1=0
5040 120 12 6 By By . “ %% 6
8 12 24 o
P By B By By (B+|37+BY+Y o
LB e 720 24 4 6
[362880 5040 240 36 24}
By B B B Y g : g
[3628800 20320 1440 144 a8 1m0 R P (29)
(22) 2 da 15a
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2
Let o= b bearoot of (29). Substituting this value
xa
of ¢ into (29), we obtain
4%* ~15x%430=0 (30)

= x = —12275 or x = 2.1990 or x = 2.7785

2 2 2
—e=-— 0.81{1)—} orc= 0.36[b—j or ¢ = 0_45{13—} (31)
a a a

e{ BB By BWJ

+—+ +
5040 120 12 6

6 4 2 a2 3
P B By vy,
5040 120 12 6

3 2 4 [
:>C—— b_02+ bz c— b - =0 (32)
3 3a 10a 126a

2
Let ¢ = b bearootof (32). Substituting this value
xa

of ¢ into (32), we obtain
5%’ - 63x7 +210x-210=0 (33

= x=21531orx =2.4346 or x =8.0123

2 2 2
c= 0.12{bJ orc= 0.41[bj orc= 0.46(bj 34
a a a

8 [} 4 .2 2.3 4
. oo P BY By By v,
40320

720 48 12 24

8 i 4 2 2.3 4
LB By BY By Y, 35
40320 720 48 12 24

Repeating the procedure of substituting the values of

2
P and v into (35) and letting ¢ — b , we obtain
Xa
33x —196x” + 420x*-420=0 (36)

Equation 36 has only two real roots given by
x=—-0827 and x =1.426 . It follows that

2 2
0——1.21(1)—} 0rc-0.70[b—J (37)
a a

9 7 5.2 3.3 4
. ee| P By By By By
362880 5040 240 36 24

9 7 5.2 3.3 4
(B By BrY By BY|_, (38

362880 5040 240 36 24
Repeating the procedure of substituting the values of

B and y into (38) and letting ¢ — 0
Xa

, we obtain

7x - 360x7+2268x* —5040x+3780 =0 (39)

= x=2.1033 orx =2.6043 or x = 2.2164 or x = 44.5060

2 2 2
=Cc= 0.0Z[b—} orc= O.BS[b—J orc= 0.45[b—J
a a a

orc= 0.48[b—2J (40)

a

o ol BBy B B P Y
3628800 40320 1440 144 48 24

10 B G,,2 4,3 2,4 4
. p BYIBYIBYJFBY}Y_:O@H)
3628800 40320 1440 144 48 24

Repeating the procedure of substituting the values of

, we obtain

Bandy into(41)and letting ¢— °
Xa

1553%°=5940x* +20160x* —25200x° +15120=0 (42)

Equation 42 has only one real root given by
x = -0.6136. Tt follows that

c= —1.63[132} (43)

and so on.
From our analysis so far, it does appear that Eg. 20
holds if A(a,b) — 0 and

2
c= k[bj, for some real k (44)
a

Table 2 gives an mvestigation of the behaviour of

k forthe case wherea=1.0,b=0.01, , _ k{b_z} = 0.0001k >
a

a 2\a
¢-0.00005. It is clear that for R* =099, k has so many

«=1log,a=000,=b/a=001 and ,_° 1{13]2 =
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Table 2: Determination of k and ¢ for Afa, b)=0.01

k c v i B ¥ s R?
400.0 0.04000 0.03995 0.52261 011503 -0.00063 0.2012 98.4
300.0 0.03000 0.02995 0.37832 011013 -0.00060 0.1744 98.7
200.0 0.02000 0.01995 0.20266 0.10246 -0.00054 0.1375 99.1
100.0 0.01000 0.00995 -0.01866 0.087406 -0.00043 0.0806 99.6
50.0 0.00500 0.00495 -0.14062 0.07075 -0.00031 0.0401 99.9
# # * * * * * *
1.0 0.00010 0.00005 -0.01230 0.01170 -0.00001 0.0035 100.0
0.9 0.00009 0.00004 -0.01019 0.01139 -0.00001 0.0029 100.0
0.8 0.00008 0.00003 -0.00812 0.01111 -0.00001 0.0023 100.0
0.7 0.00007 0.00002 -0.00608 0.01084 -0.00001 0.0017 100.0
0.6 0.00006 0.00001 -0.00407 0.01057 -0.00001 0.0011 100.0
0.5 0.00005 0.00000 -0.00211 0.01031 -0.00001 0.0003 100.0
0.4 0.00004 -0.00001 -0.00020 0.01005 -0.00001 0.0001 100.0
0.3 0.00003 -0.00002 0.00165 0.00981 -0.00002 0.0006 100.0
0.2 0.00002 -0.00003 0.00341 0.00957 -0.00002 0.0011 100.0
0.1 0.00001 -0.00004 0.00507 0.00935 -0.00002 0.0016 100.0
0.0 0.00000 -0.00005 0.00662 0.00914 -0.00002 0.0020 100.0
-0.1 -0.00001 -0.00006 0.00801 0.00895 -0.00003 0.0024 100.0
-0.2 -0.00002 -0.00007 0.00923 0.00878 -0.00003 0.0028 100.0
-0.3 -0.00003 -0.00008 0.01024 0.00863 -0.00003 0.0031 100.0
-0.4 -0.00004 -0.00009 0.01100 0.00851 -0.00004 0.0032 99.9
-0.5 -0.00005 -0.00010 0.01144 0.00842 -0.00005 0.0033 99.9
-0.6 -0.00006 -0.00011 0.01151 0.00838 -0.00005 0.0032 99.9
-0.7 -0.00007 -0.00012 0.01111 0.00838 -0.00006 0.0029 99.9
-0.8 -0.00008 -0.00013 0.01016 0.00844 -0.00007 0.0024 99.9
-0.9 -0.00009 -0.00014 0.00851 0.00856 -0.00008 0.0019 99.9
-1.0 -0.00010 -0.00015 0.00600 0.00877 -0.00009 0.0018 99.9
-1.1 L &* &* &* &* &* &*

* Means not applicable

Table 3: Summary of values of k and ¢ for different values of -0.006 < NUMERICAL EXAMPLES

Alab) < 0.010

a b Aa,b) k C

1.00 0.0100 0.0100 0.40 0.0000400
1.00 0.0090 0.0090 0.40 0.0000324
1.00 0.0080 0.0080 0.39 0.0000250
1.00 0.0070 0.0070 0.38 0.0000186
1.00 0.0060 0.0060 0.37 0.0000133
1.00 0.0050 0.0050 0.36 0.0000090
1.00 0.0040 0.0040 0.36 0.0000058
1.00 0.0030 0.0030 0.35 0.0000032
1.00 0.0020 0.0020 0.35 0.0000014
1.00 0.0010 0.0010 0.34 0.0000003
1.00 0.0009 0.0009 0.34 0.0000003
1.00 -0.0009 -0.0009 0.33 0.0000003
1.00 -0.0010 -0.0010 0.33 0.0000003
1.00 -0.0020 -0.0020 0.32 0.0000013
1.00 -0.0030 -0.0030 0.32 0.0000029
1.00 -0.0040 -0.0040 0.31 0.0000050
1.00 -0.0050 -0.0050 0.31 0.0000078
1.00 -0.0060 -0.0060 0.30 0.0000108

values for which Eq. 23-25 hold. Using values of s, the
estimated standard deviation about the regression line,
it 1s clear from Table 2 that the optimal condition of

.o 0_40[1>2j will be used when A(a, b) = 0.01,
a

Optimum values of k for -0.006 < A(a, b) < 0.01 were
similarly determined and summarized m Table 3. It 1s
evident that for -0.006 < A(a, b) < 0.001, optimal value of
k 13 0.3 while for 0.002 < A(a, by < 0.01, the optimal value
of k is 0.4. Equation 23-25 hold perfectly for these optimal
values of k.

US beer production: Table 4 shows 32 comsecutive
quarters of 1JS beer production, in millions of barrels, from
the first quarter of 1975 to the fourth quarter of 1982, As
shown in Table 4 and Fig. 1, the series is clearly seasonal
with a slight upward trend. There is an upsurge of the
series almost of equal magnitude in the second and third
quarters and a sharp drop (again of almost equal
magnitude) in the first and fourth quarters. The yearly
standard deviations are stable while the
standard deviations show a steady decline, indicating that
the series needs some transformation to make the

seasonal

seasonal effect additive and stabilize the variance.
Concentrating on the seasonal averages and standard
deviations, we use Barttlet (1947) transformation method
to obtain the slope of the linear relationship between
the logarithms of the standard deviations and averages.
In our own case, a slope of 0.8] was obtained (which
is approximately 1), which suggest a logarithmic
transformation.

Wei (1989), ignoring the stochastic trend in the
series, used 30 observations of the original series for
ARIMA model construction. Based on the forecasting
performance of his models, he settled on the model

(1-B*)X, = 1.49+ (1-0.87B" Je, (45)
(+£0.09) (£016)
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Table 4: US Quarterly beer production in millions of barrels, between 1975 and 1982

Quarter
Year 1 1I 111 v Total Average SD
1975 36.14 44.60 44.15 35.72 160.61 40.1525 4.8822
1976 36.19 44.63 46.95 36.90 164.67 41.1675 54287
1977 39.66 4972 44.49 36.54 170.41 42.6026 57629
1978 4144 4907 48.98 39.59 179.08 44.7700 49711
1979 4429 50.09 48.42 4139 184.19 46.0475 3.9476
1980 46.11 53.44 53.00 42.52 195.07 487675 5.3491
1981 4461 55.18 5224 41.66 193.69 484226 6.3378
1982 4784 54.27 5231 41.83 196.25 49.0625 5.5217
Total 336.28 401.00 390.54 316.15 1443.97
Average 42,0350 50.1250 488175 39.5188 45.1241
SD 44228 4.0659 3.4967 2.7413

60 -
A

& = 55 M, =39.6528 + 0.3343t

=]

£Es

2%

%,s 45

=

M E 40

35 r . r v r v
0 5 10 15 20 25 30

Time

Fig. 1: US beer production, in millions of barrels, between 1975 and 1982

5 4 M =3.6775 + 0.0075t
E g

=
2%
23

(=9
g 5
g8
Z

35 ' . . . . .
0 5 10 15 20 25 30
Time

Fig. 2: Natural logarithm of US beer production

with &2 =2.39. Iwueze and Nwogu (2004), using their
Buys-Ballot modeling procedure, fitted the descriptive
model (2) to the 30 observations to obtain:
M, =38.9484+0.3894t, S, = 0.9467, S, =1.1200, S, =1.0712,
g , = 0.8620 and error standard deviation of 0.03. In terms
of forecasts, Iwueze and Nwogu (2004) claimed that their
multiplicative model outperforms the ARIMA model of
Wei (1989).

Fitting the multiplicative model (2) to the entire series
X, we obtain:
M, =39.6084+0.3343t, S, = 0.9404, S, =1.1146,S, =1.0784,
S, =0.8666 and G, = 0.0303. Alternatively, fitting the
additive model (3) to the transformed series Y, = log, X

t

we  obtain: M =36775+00075t, § = 00442, S, = 01027,
S, =0.0826,S;=-0.1411 and &, = 0.0324. It is
cvident that A(a.b) =0.3243/39.6084 = 0.0084 ~and

as expected from earlier results, Y, =log, X, will have
a linear trend-cycle component given by M =a + Bt

with a =log,a =log,39.6084 =3.6790 and
B =b/4a = 0.3243/39.6084 = 0.0084.
International airline passengers data: Monthly

passenger totals (measured in thousands) in International
Air Travels quoted by Box ef al. (1994) and listed as
Table 5 and Fig. 3 is our next example. The plot of the
series which shows a marked seasonal pattern and linear
trend is shown in Fig. 2. Box et al. (1994) have fitted the
multiplicative seasonal ARIMA (0, 1, 1) x (0, 1, 1),, model
to the natural logarithms of the Airline data. Our interest
here is to measure the trend-cycle component of the
original and natural logarithms of the data. The Barttlet
(1947) transformation method strongly supports the
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Table 5: International Airline Passengers: Monthly Totals (thousands of passengers) January 1949-December 1960

Month

Year Jan. Feb. Mar. Apr. May. June July Aug. Sept. Oct. Nov. Dec. Average  SD
1949 112.0 118.0 132.0 129.0 121.0 135.0 148.0 148.0 136.0 119.0 1040 118.0 126.7 13.7
1950 115.0 126.0 141.0 135.0 125.0 149.0 170.0 170.0 158.0 133.0 114.0  140.0 139.7 19.1
1951 145.0 150.0 178.0 163.0 172.0 178.0 199.0 199.0 184.0 162.0 146.0  166.0 170.2 18.4
1952 171.0 180.0 193.0 181.0 183.0 218.0 230.0 242.0  209.0 191.0 172.0  194.0 197.0 23.0
1953 196.0 196.0 236.0 235.0 229.0 243.0 264.0 2720  237.0 211.0 180.0  201.0 225.0 28.5
1954 204.0 188.0 235.0 227.0 234.0 264.0 302.0 293.0  259.0 229.0 203.0 229.0 238.9 349
1955 242.0 233.0 267.0 269.0 270.0 315.0 364.0 347.0  312.0 274.0 237.0 278.0 284.0 421
1956 284.0 277.0 317.0 313.0 3180.0 374.0 413.0 405.0  355.0 306.0 271.0  306.0 328.2 47.9
1957 315.0 301.0 356.0 348.0 355.0 422.0 465.0 467.0  404.0 347.0 305.0 336.0 368.4 579
1958 340.0 318.0 362.0 348.0 363.0 435.0 491.0 505.0 4040 359.0 310.0 337.0 381.0 64.5
1959 360.0 342.0 406.0 396.0 420.0 472.0 548.0 559.0  463.0 407.0 362.0 405.0 4283 69.8
1960 417.0 391.0 419.0 461.0 472.0 535.0 622.0 606.0  508.0 461.0 390.0 432.0 476.2 77.7
Average 241.8 235.0 270.2 267.1 271.8 311.7 3513 351.1 302.4 266.6 2328 261.8 280.3 -
SD 101.0 89.6 100.6 107.4 114.7 134.2 156.8 155.8 124.0 110.7 95.2  103.1 - 120.0
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Fig. 3: Totals of international airline passengers in thousands, Jan. 1949-Dec. 1960
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Fig. 4: Natural logarithm of totals of international airline passengers

logarithmic transformation since the linear relationship
between the logarithms of the standard deviations and
averages 1s 1.31 for the years and 1.27 for the months.
Fitting the trend-cycle line to the original series X, we
obtain: M, = 87.6528+2.6572t, R* = 0.85, which implies
that A(a, b) = 0.0303. However, fitting the trend-cycle line
to the transformed series Y, = log.X,, we obtain:
M = 4.8137+0.0100t, R* =0.90 (Fig. 4). Using A(a, b) =
0.0303 and the methods for the determination of Table 1,
wefitaline to Jog M, =log,87.6528 (1.00+0.0303t) and
obtain the following: & =4.7751, p=0.0106 and

R?*=095. If the fit to the trend-cycle component
of Y =log, X, 1is perfect, we would have
o =log,87.6528 = 4.4734 and B =2.65/87.6528 =0.0303.

Nigeria consumer price index: Our final example that has
to do with a quadratic trend-cycle component is the
consumer price index (January 1970-December 1979) in
Nigeria quoted by Iwueze and Akpanta (2006) and listed
as Table 6 and Fig. 5. Iwueze and Akpanta (2006) after
performing time series decomposition on Y, =log X, ,
also fitted the scasonal multiplicative ARIMA
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Table 6: Nigeria consumer price index (January 1970-December 1979)

Month

Year Jan. Feb. Mar. Apr. May. June July Aug. Sept. Oct. Nov. Dec. Average  SD
1970 10.30 10.30 10.40 10.70 1090 11.00 11.00 11.00  11.20 11.00 11,10 11.20 10.842 0.334
1971 11.60 11.80 12.00 12.10 12.60  13.10 13.50 12.80 12.80 12.90 12.80 12.90 12.575 0.572
1972 12.90 13.20 13.30 13.00 1350 13.40 13.10 1260 12.50 13.80 1240 12.40 13.008  0.460
1973 12.60 13.10 13.10 13.40 13.70  14.00 14.00 1390  13.60 13.60 13.60 13.60 13.517 0413
1974 14.70 14.70 14.80 15.50 1530 1530 15.70 1560 15.80 15.60 16.00  16.10 15.425 0.481
1975 17.10 18.10 18.90 19.30 20.50  21.30 21.50 2190 22.00 22.00 22.60 23.10 20.692 1.910
1976 23.90 24.60 2420 24.40 2460  25.00 25.10 25.60  25.60 26.30 25.50 25.10 24,992 0.688
1977 27.10 26.60 27.50 28.30 29.60  30.70 31.70 32.80 31.80 32.20 33.00 34.00 30.442  2.545
1978 31.00 32.10 32.90 33.70 3500 3540 35.20 3530 3550 35.90 35.80 36.10 34,492 1.668
1979 35.70 36.80 37.50 38.30 39.10  39.40 39.40 39.10  39.10 39.10 3920 39.10 38.483 1.194
Average  19.69 20.13 20.46 20.87 2148 21.86 22.02 2206 21.99 22.24 2220 2236 21.447 -
SD 9.06 9.31 9.55 9.81 10.13  10.28 10.31 10.54  10.46 1049 10.65  10.76 - 9.687
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Fig. 5: Nigeria consumer price index (January 1970-December 1979)
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Fig. 6: Natural logarithm of Nigeria’s consumer price index (January 1970-December 1979)

0 (2,2)x(0, 1, 1),, time series model on Y, =log, X, . The
Barttlet (1947) transformation method strongly supports
the logarithmic transformation since the linear relationship
between the logarithms of the standard deviations and
averages is 1.27 for the years and 1.27 for the months.

Fitting the trend-cycle quadratic curve to the original
series X, we obtain: M, =10.8672-0.0069t+0.0023
t? =10.8672(1.0-0.00064t+0.00021t*), R? =0.98 which
implies that a =1.0, b = —0.00064, ¢ = 0.00021 and A(a, b)
=-0.00064, k = ¢/(b¥a) = 512.6952 ~ 513. However, fitting
the trend-cycle quadratic curve to the transformed series
Y, =log X, ,weobtain: M’ =2.3275+0.0067 t+0.00005t>,
R’ =0.97 (Fig. 6).

If the quadratic curve fits the trend-cycle component
of Y, =log X, perfectly, then o =log 10.8672 = 2.3857,
B =-0.0069/10.8672 =-0.0006 and v = 0.0023/10.8672-
(1/2)(-0.0069/10.8672)* = 0.0002. Obtained results differ
significantly with respect to fand y. Using A(a, b) =

-0.0006 and the methods for the determination of Table 2

whena=1.0,b=-0.00064 and . - k[b_7] , we observe that
a

the optimal value of k is 0.33, which implies that the
constant ¢ ought to be 0.000000135. This accounts for the
observed differences. Alternatively, if we fit a quadratic
cuveto Jog. M, =log,10.8672(1.00 —0.00064t+0.00021t*)
we obtain the following: ¢ =2.3274, f; = 0.0062
7=0.00006 and R*=0.977.

CONCLUSION

We have examined the effect of the logarithmic
transformation on two simple trending curves (straight
line and quadratic curves), with a view to achieving no
alteration to the fundamental nature of the original data.
The basic approach in our analysis was to assume that
the transformed data has the same tend-cycle curve form
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as the magnitudes of the original time series data. To
achieve this, we have placed necessary and sufficient
conditions on the parameters of the original curve. For the
straight line, the necessary condition 15 that
a>0and A(a,b)=b/a — 0. For the quadratic curve, the
sufficient condition is that a > 0, A(a,b)=b/a — 0 and

c= k[b_zJ . The real constant k is determined with the
a
help of the coefficient of the multiple determination, R’
and the estimated standard deviation about the regression
line, s. Optimal values of k were also obtained for
—0.006 = A(a,b) =0.01 .

In fiting trend curves to the logarithmically
transformed time series data, we need the sufficient
conditions derived to tell us not only the appropriate form
of the trend curve but also help us provide good
estimates of the mumerical values of its parameters. These
values can then be checked later by trend analysis of the
transformed data.
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