Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com




Tournal of Applied Sciences 7 (17): 2450-2455, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

Viscosity Calculation at Moderate Pressure for Nonpolar
Gases via Neural Network

'A. Bouzidi, 2S. Hanini, °F. Souahi, 'B. Mohammedi and ‘M. Touiza
'Centre de Recherche Nucleaire de Birine B.P. 180, Ain Oussera W. Djelfa, C.P. 17200, Algérie
‘LBMPT Université de Médéa, C.P. 26000, Algérie
*ENP, El Harrach, Alger, Algérie

Abstract: A new method, based on Artificial Neural Networks (ANN) of Multi-Layer Perceptron (MLP) type,
has been developed to estimate the viscosity at moderate pressure for pure nonpolar gases over a wide range
of temperatures. An ANN was traimned, using four physicochemical properties: Molecular weight (M), boiling
point (T), critical Temperature (T,) and critical Pressure (P,) combined with absolute Temperature (T) as its
inputs, to correlate and predict viscosity. A group of 52 nonpolar gases were used to train and test the
performance of the ANN. The viscosity and input data for each individual gas was compiled on average at fifty
different temperatures, ranging from the boiling points for each of the chosen gases to 1100 K. The maximum
absolute error in viscosity, predicted by the ANN, was approximately 15%.
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INTRODUCTION

Viscosity is indicated as being one of the most
significant transport properties because it’s related to the
movement of molecular agitation. That means, the
molecular transport of momentum is the corollary of the
fluid forces of cohesion. Viscosity is required by chemical
engineers mvolved in reactor applications, heat and mass
transfer.

Accurate experimental measurements of viscosity,
particularly at wvery high and/or very low temperature,
are laborious and complex task. On the other hand,

kinetic theory of gases made it possible to establish
formulas for the calculation of gases viscosity of which
have recently gained a wider acceptance, but very difficult
to use because it comprises several parameters, which
are often not easy to acquire.

After bibliographical synthesis, some empirical
models were recapitulated among the most used in the
calculation of nonpolar gases viscosity (Table 1).

At present, a considerable empirical
models for estimating gases viscosity which have some
limited success (Reid et al, 1977, Zhao, 1997, Adel
Elshartkawy, 2004; Scalabrin ef al., 2002; Maloka, 2005).

there 1s

Table 1: Theoretical models for nonpolar gases viscosity calculation (Reid et ai., 1977)
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These approaches are typically limited to narrow ranges
of compounds across narrow ranges of temperature.

The advances in Artificial Neural Networks (ANN)
have provided a tool that may be used to avoid the
shortcomings involved in empirical methods. Indeed, the
ANN can approach uniformly any sufficiently regular
bounded function, with an arbitrary precision, m a limited
domam of its variables space, with faster speed of
information processing, learning ability, fault tolerance
and multi-output ability.

Although there are a few reports (Homer et al., 1999;
Lee et al.,, 1994; Chang et al., 1995; Adel Elsharkwy and
Gharbi, 2001) of using ANNs in the prediction of
physicochemical properties, these reports have generally
been restricted to liquid rather than gases. The present
research presents the findings of a programme of work
devoted to the application of ANNs gases viscosity.

PROCEDURE

Data base: The pool of compounds in this study
consisted of 52 nonpolar gases (Table 2), because of
experimental data deficiency over wide range of
temperature, the viscosity were deduced by the first

Table 2: List of gases used to provide training and test data of ANN
(Reid et al., 1977, Division Scientifique de L’AIR LIQUIDE,
1976; Gosse, Dérouléde et af., 1991)

Gas M, g/mole T, K T.K P, bar
1,3-Butadiene 54.091 268.65 425.15 43.22
1-butene 56.107 266.90 419.55 39.25
2,2-Dimethyl propane 72.15 282.65 433.78 31.96
Acetylene 26.038 189.20 308.33 61.91
Argon 39.948 87.29 150.86 48.98
BRoron trichloride 11717 285.65 451.95 38.70
BRoron triflucride 67.80 172.85 260.85 49.85
Bromine 159.808 331.90 584.15 103.35
Carbon dioxide 44,01 194.60 304.28 73.825
Carbon disulfide 76.131 319.40 552.000 78.000
Carbon monoxide 28.01 81.62 132,91 34.987
Carbon tetrachloride 153.823 349.70 556.40 45.00
Carbon tetrafluoride 88.01 145.21 227.70 37.43
Chlorine 70.906 239.05 417.15 77.00
Chloropentafluoroethane  154.48 235.15 353.15 31.60
Chlorotrifluoromethane 104.47 191.65 301.93 38.60
Cis-2-butene 56.107 276.87 433.15 42.07
Cyanogen 52.035 252000 40015 59.40
Cyclobutane 56.107 288.66 459.95 49.65
Cyclopropane 42.08 240.35 398.30 55.79
Deuterium 4.029 23.57 3835 16.65
Diborane (B,F;) 27.67 180.65 289.80 40.53
Dichlorodifluoromethane 120.93 243.37 385.15 41.15
Dichlorotetrafluoroethane  170.93 276.75 418.85 32.63
Ethane 30.069 184.47 305.42 48.839
Ethylene 28.054 169.43 282.65 50.76
fluorine 37.997 84.95 144.30 52.15
Helium-4 4.0026 4.224 5.20 2275
Hexafluoroethane 138.02 194.95 292.85 29.80
Hydrogen 2.016 20.384 33.24 12.98
Hydrogen iodide 127.912 237.75 423.95 83.000

Table 2: Continued

Gas M, gimole . T, K T. K P, bar
Isobutane 58.123 261.45 408.13 37.20
Tsobutylene 56.107 266.03 417.85 40.01
Krypton 83.80 119.80 209.40 55.02
Methane 16.043 111.63 190.53 45.96
N-butane 58.123 272.65 42518 37.96
Neon 20.179 27.10 44.40 27.56
Nitric oxide 30.006 121.40 180.15 64.85
Nitrogen 28.0134 77.347 126.20 33,900
Nitrous oxide 44.013 184.68 309.56 72.45
Octafluoropropane 188.02 236.45 345.05 26.80
Oxygen 31.9988 90.18 154.576 50.43
Perfluorobutane 238.028 271.45 386.45 24.27
Perfluorobutene 200.04 267.16 388.37 27.77
Propadiene 40,0635 238.75 393.85 52.49
Propane 44.096 231.105 369.82 42.50
Propylene 42.08 22543 364,75 46.10
Sulfur hexafluoride 146.05 209.50 318.69 37.59
Tetrafluoroethylene 100.016 197.53 306.45 40.350
Trans-2-butene 56.107 274.03 428.15 40.80
Trichlorodifluoromethane  137.38 296.92 471.15 43.74
Xenon 131.30 165.05 280,733 58.40

correlation shown in Table 1 and corrected by some
experimental viscosity data (Reid et af., 1977, Division
Scientifique de L”AIR LIQUIDE, 1976, Gosse ef al., 1991)
every 20 K rangmng from the boiling point for all the
compounds to 1100 K. This resulted in each gas being
studied at approximately 50 different temperatures. The
viscosity data obtained consist of 2652 vectors which
were divided mto two sets and used separately. One set
of 1989 randomly selected vectors was used to train the
ANN. The remaining 664 vectors, which contained
approximately a third of the data base, were used as test
set for checking the predictive performance of the ANN.

The inputs to the ANN consisted of absolute
temperature and four physical properties (M, Te¢, Th, Pc).
The choice of the nature and the number of ANN inputs
has been done after bibliographical synthesis (Reid,
Prausmitz and Sherwood, 1977, Gosse, Dérouléde et al.,
1991), particularly the model of Chapman-Enskog
(Table 1).

Neural network design: Within the literature, ANNs
which have been used for the estimation and the
prediction of physicochemical properties have generally
been multi-layered feedforward non-linear ANNs tramned
via the back-propagation rule to perform a function
approximation. It has been shown that non-linear feed
forward neural networks are capable of universal
functional approximation and that a single hidden layer
with sigmoid transfer function and one neuron in the
output layer with linear transfer function is sufficient to
uniformly approximate any continuous bounded function
(Dreyfus ef al., 2002).

ANNs are also sensitive to the number of neurons in
their hidden layers. Too few neurons can lead to
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underfitting. Too many neurons can contribute to
overfitting. In the first case, the training points and the
fitting curve points are all inaccurately estimated but in
the second case, the training points are accurately
estimated, however the fitting curve tasks wild
oscillations between these points and this leads to poor
generalization.

The choice of the number of neurons in the hidden
layers is, therefore, a delicate compromise between
providing sufficient neurons to adequately determine an
approximate functional relationship and avoiding the use
of too many neurons which can lead to overfitting.

After the evaluation of a considerable number of
differently structured neural networks, the best ANN
selected in this investigation had a single hidden layer
with 30 neurons and an output layer with one neuron. The
hidden layer had a tansig transfer function and the output
layer had a purelin transfer function (Fig. 1).

The output viscosity of the designed ANN is given
by this expression:

5
1 —exp(—Z[ZVVi’ij + biD
j=1
5
1+exp —2{2 WX+ bi]

30
n:ZWm +b;, )
o1

=1

where X represents the inputs variables (M, T, T,, P, and
T) and W;; being the weights from input (j) to neuron (i)
with b;and b;, representing bias of the neurons in hidden
layer and bias of the neuron in output layer, respectively.

Normalization: As the values of the physical input
properties to the ANN differed by several orders of
magnitude, which may not reflect the relative importance
of the properties in determining viscosity, all of the inputs
matrix variables (X;) were normalized by using

Inputs

Hidden layer Output layer

Fig. 1: Schematic operation of the ANN

X
Xt o

[3x)

Where X! are the re-scaled input values and n=1,...,5
labels the input patterns. However, the target viscosity
values weren’t different by important orders of magnitude
so there wasn’t a need to be normalized.

2

Ol

RESULTS AND ANALYSIS

We have opted to use in this investigation the
commercially available neural network toolbox supplied
for the Matlab package due to its versatility. The ANN
was trained using the Lavenberg-Marquadt back
propagation algorithm.

The training algorithm used in the Matlab neural
network toolbox was therefore trainlm which encompasses
Lavenberg-Marquadt back propagation. To prevent over
training, we have chosen to train the ANN until the
minimum of the Mean of Squared Errors (MSE)
performance function.

The weights and bias of the final trained ANN are
summarized in the Table 3. Figure 2 shows a plot of target
viscosity vs the correlated viscosity and Fig. 3 shows a
plot of target viscosity vs. predicted viscosity by the
ANN.

The statistical quality of the ANN for both
training and test sets was then evaluated using
following parameters: Squared correlation coefficient R,

Best linear fit: Cv = (1) Tv + (0.000469)
T T

70F O  Cvas function of Tv
Best linear fit
6o e Cv=Tv
50} R=0.9999 4

40§

30

Correlated viscosity (Cv), pPa.s

20F

10f

1020 30 40 30 60 70
Target viscosity (Tv), uPa.s

Fig. 2: Training or correlated results
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Table 3: Weights and bias of the designed ANN
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Hidden layer Output layer
Weights matrix Bias vector  Weights vector Bias vector
37.6468 -74.9423 95.8556 -63.9581 233281 -24.8066 84.7141
236.3601 -166.0948 140.0404 -311.251 29123 -3.8596 17.6553
-7.6105 -101.969 85.7236 -101.1029 0.99828 -1.1438 -21.0691
-105.7294 -95.4821 71.2049 90.3356 0.99459 -0.98442 31.2072
124.4201 -91.4223 16.3008 9.5669 0.16856 0.58225 -14.7499
-113.7233 -375.5671 238.1092 7.5507 2.2856 227206 -13.4755
4.4242 29.8367 -8.8364 -26.0873 -1.2337 2.0842 -68.3284
-4.6976 33.6818 -59.9495 43.6137 -20.079 20.5125 217.8401
-211.4377 33.8831 11.8012 38.7715 -0.66586 0.27116 25.5537
-9.5939 14.4785 15.8196 -60.3992 -0.061528 0.090345 39.9496 104.6895
-8.0103 18.8197 -8.4365 -0.39496 0.96619 0.19814 23.4808
-103.1649 -252.3979 2293485 -52.6815 -0.36015 0.75602 9.8745
5.8245 9.4597 -8.6838 4.6144 -0.02635 -0.46247 -108.3947
174142 -72.4752 35.8126 -19.8721 -0.10667 045116 240.1328
-100.2732 319.7116 -72.4102 -1071.1571 0.06508 -0.30041 8.3704
145.2939 39.7231 -40.4825 -15.2097 -0.10385 0.42055 -32.6796
267185 93.6339 2.9025 -192.1907 -1.9879 2.0489 -34.3943
12.1399 -61.1697 14.3716 109.4575 0.12315 04411 229.0629
14.3103 -25.3898 10.2232 -7.4421 -0.40892 0.58561 60.1941
143.3846 133.608 38.795 -63.5322 1.1227 -0.44126 -36.8734
56.2966 21.921 2.0613 37.7494 0.86614 -0.38937 -115.9906
129.868 -136.1961 94.0158 -199.7397 0.14226 0.025914 22.7025
-5.2252 -5.3228 56516 3.8152 -0.13704 0.053805 -108.7263
-130.7224 -153.874 137.7436 -157.5938 0.67714 -0.93395 -28.8496
203177 -46.4645 -42.8664 78.2359 221507 -20.6249 -34.9443
64.6786 -77.8808 9.1312 604.3145 0.26763 -0.61904 2293013
54.4566 -22.6254 3.3718 35.0292 0.88896 -0.77337 135.8042
-24.7407 58.0006 -35.8111 -44.8946 -0.44851 0.097837 242.1439
19.5423 -78.7647 47.8068 -62.4719 -0.54916 0.70418 -10.8486
-161.575 -253.6512 122.2105 181.2687 40.254 -41.6271 -61.1156
Best linear fit: Cv = (1) Tv + (-0.00661) where
70 L T T L] T T T
[&] Cv as function of Tv la
. t
Best linear fit Vo= _Z (yi _Yi) (4)
601 « Cv=Tv 7 n 5o
K ] and the root-mean-square error, RMSE, is
=
N
2 L a 1/2
. _ t\2 5
§ nio
B
g E
2 In order to compare the results of the ANN with the
£ data base viscosity, we also evaluated the following
parameters: Absolute Error (AE)
; -yl
AE, =| =——11100 (©)
L 1 L 1 1 1 1 Yi
10 20 30 40 50 60 70
Target viscosity (Tv), pPa.s
Average Absolute Error (AAE),
Fig. 3: Predicted results
1 n
. AAE ==Y AE, (M
ty2 n-i-
Z (Y1 - Y1) =1
Re1 ®) »
>, -y and Standard Deviation (STDEV),
i 0
i=1
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Table 4: Statistical performance of the trained ANN for gas viscosity

Property Correlated Predicted
R 0.9999750 0.9999912
RMSE 0.1335 0.1370
AAE 0.69 (%) 0.704 (%%)
STDEV 1.1626 (%) 0.5043(%)
AE (max) 15.1633 (%0) 12.9961(%)
Table 5: Comparison between ANN and theoretical models according to the experimental values of low-pressure gas viscosity
Absolute error [(cale. — exp.)/exp.]*100,%
Theoretical values o and e/k
Experimental Available® Estimated® Thodos ef al.? Golubev? Reichenberg? Proposed ANN
Vallle, = meememmmmmmmemmmmnmn eemmmemeemiien eeemeeemmsmemses ememmmemesmemesss emememsmssssieis eeeeeeseeseseeaes
Compound T.K 10~ p n AE | AE n AE n AE n AE | AE
1-butene 293.0 7.61 - - 7.73 1.60 7.70 1.20 7.89 3.70 7.75 1.80 757 048
333.0 8.39 - - 8.53 1.70 8.75 4.30 893 6.40 8.78 4.60 861 2.62
393.0 9.98 - - 10.09 1.10 10.30 3.20 1047 4.90 10.29 3.10 1015 171
Acetylene 303.0 10.20 10.44 2.40 10.30 1.00 10.25 0.50 1042 2.20 10.44 2.40 10.37 165
374.0 12.60 12.70 0.80 12.88 2.20 12.70 0.80 13.02 3.30 12.69 0.70 1268 0.63
473.0 15.50 15.59 0.60 15.83 2.10 15.59 0.60 17.36 12.00 15.61 0.70 1563 0487
Carbon dioxide 303.0 15.10 1531 1.40 15.24 0.90 15.28 1.20 15.54 2.90 - - 1504 037
373.5 18.10 18.46 2.00 18.32 1.20 18.62 2.90 19.46 7.50 - - 18.36 146
473.1 21.90 2245 2.50 22.62 3.30 22.95 4.80 26.06 19.00 - - 2278 400
Carbon disulfide 303.0 9.46 10.08 6.60 10.22 8.00 10.50 11.00 10.88 15.00 - - 1000 573
371.2 11.90 12.48 4.90 12.65 6.30 12.99 9.20 1333 12.00 - - 1234 3.69
473.0 15.10 1593 5.50 16.13 6.80 16.47 9.10 16.76 11.00 - - 1590 530
Carbon tetrachloride  398.0 13.30 13.54 1.80 13.38 0.60 13.58 2.10 1391 4.60 13.65 2.60 1319 04383
473.0 15.60 15.85 1.60 15.71 0.70 16.08 310 16.38 5.00 15.93 2.10 1568 054
573.0 19.00 19.36 1.90 19.44 2.30 19.80 4.20 20.16 6.10 19.27 1.40 1894 034
Chlorine 293.0 13.30 1351 1.60 13.43 1.00 13.47 1.30 13.81 3.80 - - 1290 298
373.0 16.80 1692 0.70 16.82 0.10 17.10 1.80 17.40 3.60 - - 16.55 151
473.0 20.90 2096 0.30 21.19 1.40 21.51 2.90 2211 5.80 - - 2091 0.06
Ethane 293.0 9.01 917 1.80 9.01 0.00 9.17 1.80 933 3.50 9.19 2.00 9.18 1.84
323.0 9.98 10.14 1.60 10.00 0.20 10.16 1.80 10.37 3.90 10.20 2.20 1005 0.68
373.0 11.40 - - 11.42 0.20 11.59 1.70 12.10 6.10 11.67 2.40 1148 0.69
523.0 15.30 1541 0.70 15.44 0.90 15.67 2.40 18.82 23.00 15.62 2.10 1541 0.73
Ethylene 323.0 11.10 11.20 0.90 11.40 2.70 11.23 1.20 11.30 1.80 11.12 0.20 1097 1.19
423.0 14.10 1421 0.80 14.45 2.50 14.26 1.10 1551 10.00 14.14 0.30 1402 056
523.0 16.80 16.90 0.60 17.19 2.30 16.95 0.90 21.17 26.00 16.87 0.40 1672 050
Isobutane 293.0 7.44 7.50 0.80 7.50 0.80 7.58 1.90 7.76 4.30 7.60 2.10 7.54 132
333.0 845 849 0.50 8.49 0.50 8.62 2.00 878 3.90 8.60 1.80 8.56 125
393.0 9.95 997 0.20 9.96 0.10 10.13 1.80 1031 3.60 10.08 1.30 1003 0.84
Methane 293.0 10.90 1098 0.70 11.11 1.90 10.95 0.50 - - - - 11.08 167
373.0 13.30 1338 0.60 13.55 1.90 13.35 040 - - - - 13.50 147
473.0 16.00 16.06 0.40 16.32 2.00 16.03 0.20 - - - - 1606 037
573.0 18.50 18.57 0.40 18.87 2.00 18.52 0.10 - - - - 1847 0.8
773.0 22.70 2295 1.10 22.97 1.20 22.86 0.70 - - - - 22.85 0.64
Normal butane 293.0 7.39 7.49 1.30 7.57 2.40 7.43 0.50 7.61 3.00 7.48 1.20 746 099
333.0 8.39 848 1.10 8.56 2.00 8.44 0.60 861 2.60 8.51 1.40 848 113
393.0 9.98 10.12 1.40 10.23 2.50 10.03 0.50 10.10 1.20 10.26 2.80 9299 011
Propane 293.0 8.06 8.08 0.30 8.11 0.60 8.21 1.80 837 3.80 8.11 0.60 804 022
333.0 9.22 9.30 0.90 9.32 1.10 9.30 0.90 947 2.70 9.38 1.70 902 209
398.0 10.70 10.80 0.90 10.90 1.90 11.09 3.60 11.33 5.90 10.75 0.50 10.56 135
473.0 12.50 12.55 0.40 12.80 2.40 13.00 4.00 1371 9.70 12.59 0.70 1227 1.85
548.0 14.20 14.24 0.30 14.56 2.50 14.78 4.10 16.47 16.00 14.29 0.60 1392 196
Propylene 293.0 8.43 8.44 0.10 8.46 0.30 8.61 2.10 878 4.10 8.63 2.40 863 234
423.0 12.10 1211 0.10 12.14 0.30 12.26 1.30 12.66 4.60 12.21 0.90 1216 050
523.0 14.70 1471 0.10 14.74 0.30 14.88 1.20 16.32 11.00 14.77 0.50 1463 047
AAE % 1.29 1.73 2.28 7.12 1.58 138

'10 poise (P) = 1Pa.s., “Values were obtained from Reid, Prausnitz and Sherwood (1977)

2 /2

HZ::AEf - 2AE1

STDEV =

In these formulas, y, represents either the ith trained
or test viscosity value and <y’ representing the
(8) corresponding target viscosity value, with n bemng the

n{n-1) number of input vectors (1989 and 664 for the traning and
prediction sets, respectively). The results are summarized

in1 Table 4.
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Table 5 represents the results obtained by the
designed ANN, these were compared with various
theoretical models. The average absclute error for the
estimated viscosity by the designed ANN 1s 1.38%,
according to the experimental viscosity, for 13 different
gases, at various temperatures. However, the AAE of
other models, except the first one (1.29%), are all greater
than the AAE value of the ANN.

CONCLUSIONS

The use of the designed ANN has been shown to
accurately correlate and predict the nonpolar gases
viscosity at moderate pressure (about 1 bar), over wide
range of temperature (Temperature from boiling points of
the chosen gases to T = 2000K), for substantial number of
variously gases (both organic and nonorganic
compounds). The AAE in the predicted set of compounds
was less than 1.39% for the gases in the Table 5. When
the correlated (Fig. 2) and predicted values (Fig. 3 and
Table 5) are considered jointly the AAE is approximately
0.93%, which is a serious competitor of commonly used
method summarized in the Table 1. On the other hand, this
method can be applied without depending on many
complicated factors like 0, w, £/k and Q,, that are used in
the almost other methods.

Nomenclature
b Bias
C,  Group contribution

Boltzmamn’s constant

Molecular weight, g/mol

Number of atomic groups of ith type
Critical pressure, bar

Temperature, K

Critical temperature, K

Reduced temperature, T/Tc

Weights

R ER

o

-

=R B Il

Greek

€  Energy-potential parameter

1 Viscosity in Pas

o  Molecular diameter, A

w  Acentric factor

€, Collision integral for viscosity

=
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