Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 7 (18): 2666-2670, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

Efficient Mapping Scheme of Ring Topology Onto Tree-Hypercubes

Wesam Almobaideen, Mcohammad Qatawneh, Azzam Sleit, Imad Salah and Saleh Al-Sharaeh
Department of Computer Science, King Abdulla IT School for Information Technology,
University of Jordan, Amman, Jordan

Abstract: The Tree-hypercubes network TH(s, d) is an interconnection network that 1s recursively defined and
has excellent properties for scalable message passing computer systems. In this study we describe the ability

of a TH(s, d) to implement algorithms that use the communication pattern of linear array and a ring to formulate

a Hamiltonian cycle. We propose an algorithm for mapping a ring onto a tree-hypercubes which results in a

dilation and congestion of one.

Key words: Tree-hypercube network, linear array, ring, Hamiltonian cycle, mapping

INTRODUCTION

One of the primary design considerations for a
parallel system 1s the topology of the intercommection
network used for communication between processors.
Some of the important mnterconnection networks which
have been studied so far are hypercube, trees, meshes
and tree-hypercubes (Caha and Koubek, 2005; Gupta,
2000; Johnson, 1987; Ouyang and Palem, 1991; Leighton,
1992). Tree-hypercubes is one of the more popular general
purpose networks due to its optimal fault tolerance
properties, embedding of other networks and a fast
sorting algonthm (Oman and Abu-Salem, 1997; Qatawneh,
2005, 2006). Omari and Abu-Salem (1997) presents a new
mterconnection network called Tree-hypercubes network
which combines the advantages of both trees and
hypercubes and avoids their shortcoming. The diameter
of the tree-hypercubes 15 less than that of the hypercube.

One of the important properties of any general
ability
efficiently

mtercomnection network 15 the of an
network to

computation running on other networks. This attribute

interconnection emulate
makes it a good candidate for a topology underlying a
general-purpose parallel machine (Goldie and Kause, 1996,
Chang and Chen, 1997; Gupta, 2000). A d-dimensional
hypercube is one of the most popular interconnection
networks for parallel systems. It has regularity and
scalability to implement parallel algorithms and enables us
to embed many other structures (e.g., linear arrays, rings,
meshes and trees) as subgraphs (Tsai, 2004). The tree-
hypercubes network can emulate many interconnection
topologies such as linear array, ring, tree, hypercubes and

meshes. The problem of mappmg mterconnection
topologies into tree-hypercube network has not received
much attention {rom researchers.

A ring is a fundamental topology for parallel and
distributed processing. The following is verbatim from
(Tsai, 2004). The importance of the ring structure for
distributed computing is threefold. Firstly, the mumber of
edges of the ring is low which causes the development
cost of the ring structure to be reasonable. Secondly, the
ring structure is free of branching. Consequently, much of
potential non-determinism 1s eliminated, which allows for
the development of simple algorithms. Thirdly, the ring
network topology 1s often used as a connection structure
for local area networls such as token rings (Kurose and
Ross, 2005).

In this research, we present an algorithm for mapping
ring topelogy into tree-hypercube networle with a dilation
and congestion of one.

TREE HYPERCUBE NETWORK

Here, we define tree-hypercubes and describe a
recursive construction mechanism. A tree-hypercubes
network TH(s, d) is constructed by taking a full tree of
degree s, where s 13 a power of 2 and depth d. Levels of
the tree are numbered O, 1, ... and d. Each level k has
s* nodes representing processing elements and labeled
from O to s*1 in binary code and interconnected as a
hypercube. Thus, nodes at level k constitute (k log s)-
cube. Each node in a tree-hypercubes is identified by
a pawr (L, X), where L denotes the level number and X 15
the cube address. The total number of nodes in
TH(s, d) is N=(s™-1)/(s-1). Figure 1 and 2 show two
tree-hypercubes TH (2, 2) and TH (2, 3), respectively.

Corresponding Author: Wesam Almobaideen, Department of Computer Science,
King Abdulla IT School for Information Technology, University of Jordan, Amman, Jordan
2666

J. Applied Sci., 7 (18): 2666-2670, 2007

Fig. 2. Tree-hypercubes TH (2, 3)

A Tree-Hypercube TH(s, d) can be formally defined
as follows.

Definition 1: Let X.abe the concatenation of the label
X and the binary digit(s) a, where the levels and nodes
are labeled as above. For every level O < 1. < d, each
node (L, X)inlevel L, where X = X .,,.... X, adjacent
to the followmg s children nodes at level L+1
(L+l,Xa)for a = 0,...,5-1 if L<d and to the parent
node (L-1, Xy, 41Xy). Node (L, X) is also
adjacent to . log s nodes (I, X) in the same level where
Y's binary address differs from X m exactly one bit.

Definition 2: Tree-hypercube networks can be viewed as
a recursive structure. TH(s, 0) is the smallest tree-
hypercube and consists of one node only. TH(s, d) can be
constructed from s copies of TH(s, d-1) by adding a new
node to be the root of TH(s, d) and label it (0, 0) then
connect it to the s TH(s,d-1)'s. Label these TH(s, d-1)
networks by 0.1,... s-1 and transform the label of each of
the s nodes (0, X) to (1, X.1), where1 = 0,1,...s-1 in binary

notation. Then transform the label of each node (1., X) in
the i-th network to (L+1, iXy .. 51X 10 002--- %p). Now, any
two nodes (L, X.r) and (L,X.j) become adjacent if r and ;
differ m only one bit. As a result all nodes at level L from
an (L log s)-cube.

PRELIMINARIES FOR MAPPING

Embedding a graph G (V, E) inte G' (V', E') is a
mapping of each vertex in the set V onto a vertex (or a set
of vertices) in set V' and each edge in the set E onto an
edge (or a set of edges)in E'. When mappmg graph G
(V, E) into G'(V', E"), the following must be taken into
consideration. Firstly, one or more edge m E can be
mapped onto a single edge in E'. The maximum number of
edges mapped onto any edge m E' 1s called the
congestion of mapping. Secondly, an edge in E may be
mapped onto multiple contiguous edges in E'. This 1s
significant because traffic on the corresponding
commurication link i G must traverse more than one link
in G, possibly contributing to the congestion on the
network. The maximum number of links m E' that any edge
in E is mapped onto is called the dilation of mapping.
Thirdly, the sets V and V' may contain different numbers
of vertices. A node in V may correspond to more than one
node m V' and vice versa. The ratio of the number of
nodes in V' to that in V is called the expansion of mapping.
If there 15 a good mapping of a graph G mto G, then G' can
simulate the behavior of G with less overhead.

Here, we comsider embeddings of ring into tree-
hypercube networks. Each level k in tree-hypercubes has
s* nodes representing processing elements and labeled
from O to sl in binary and interconnected as a
hypercube. In order, to obtain the decimal address for
each node at level k we will map linear array at each level
of tree-hypercubes (Note that the straightforward decimal
encoding will not work with the proposed scheme for
mapping ring mto tree-hypercube). A linear array
composed of 2* nodes (labeled O through 2%1) can be
embedded into a k-hypercube (level k in tree-hypercubes)
by mapping node i of the linear array onto node G(i, k)
of the hypercube at level k. The function G(1, x) 1s
defined as follows:

G(0,1)=0
G(1,1H=1
. G(i.x), i<2”
G, x+ D)=
2EL G -1-1x), iz 2

The function G is called the binary Reflected Gray
Code (RGC) (Fig. 3). A careful look at the Gray Code

2667

J. Applied Sci., 7 (18): 2666-2670, 2007

1-bit gray code 2-bit gray code 3-bit gray code 34k hypercube 8-processor linear array
' o a0t i |
11 011 3 2
01 001 2 3
101 6 4
111 7 5
101 5 4]
100 4 7
Fig. 3: A three-bit reflected Gray code ring
3,000 3,001 3,010 3011 3,00 3,001 3,110 3,111 Step5 : Node = (2/2); Plus = true; Minus = false; go
tostep 6
Step 6 Counter # (2'2); go to step 7.
Step7 : Minus = false; go to step 8.
Step8 : Node = Node +1 = 4+1 = 35 with binary
address (3,111); counter = 1+1 = 2; go to step 6.
Step & : Counter # (2'/2); go to step 7.
]]]]] Step7 : Minus = false; go to step 8.
Fig. 4 Embedding 8-node linear array into third level of Step8 : Node = 5-+1= 6 with binary address (3,101);
T2 3) Counter = 2+1 = 3; goto step 6.

I . . : —
table reveals that two adjoining entries (G (3, d)and Step 6 t(;a?;;tzg;(if;’ggo tostep 7. Step 7: Munus =
G (i+1, d)) differ from each other at only one bit position. ’ o
Since node 1 1n the linear array 1s mappgd to nodfG (1, d) Step8 : Node =6+1 =7 with binary address (3,100);
and node i + 1 is mapped to G (i + 1, d), there is a direct Counter = 3+11 ~ 4 gotosiep6.
link m the hypercube that corresponds to each direct link Step6 @ Counter = (2 /_2) = 4 Counter =1; Node =
in the linear array. (Recall that two nodes whose labels Parent (7) = 3 with address (2,010); go to step 3.
differ at only one bit position have a direct link in a Step3 @ T7# 0, thengotostep 4.
hypercube.) Therefore, the mapping specified by the Step 4 : Node =(2/2)-1 = 3 Minus = true; Plus = false;
function G has a dilation of one and a congestion of one. gotostep 6.

Figure 4 shows an example that shows how we obtain the Step6 : Counter # (212); gotostep 7.
decimal address for each node at level k, where k =3, t.e. Step 7 : Minus = true; Node = Node-1 = 3-1= 2with
third level in TH (2, 3), by embedding an eight-node linear binary address (2,011); Counter = 1+1 =2; go
array into a three-dimensional hypercube. to step 6.
Step & : Counter = (2Y2); Counter =1; Node = parent

ALGORITHM FOR MAPPING RING TOPOLOGY (2) = 1 with binary address (1,001).

INTO TREE-HYPERCUBE NETWORK Step3 : 1+ 0;gotostep 4; Step 4 Node = (2%2)-1 = 1;

Minus = true;

Algorithm for mapping ring described into tree- Step6 : Counter = (2'/2) = 1; Node = parent (1) = 0 with
hpercubes. First we will map a linear array at each level of binary address (0,000); go to step3.
tree-hypercube networks TH(s, d), in order to obtain the Step3 : T = Othen go to step 9.
decimal address for each node at each level k in TH(s, d). Step© : Node = left Child (0) = 0 with binary address
Then we will find the start node in last level (Note that the ' (1,000); Counter = 1:
algorithm starts working from last level of TH (s, d)). The o 2
algorithm is shown in Fig. 5. Step 10 Node = 27/2-1 C 0

The followmg example explains the procedure of Step11: Plus = true; Minus = false;)
mapping a ring with 2121 nodes into a TH (2, 3) (Fig, 6). Step 12 : Counter =242 = 1, Node = left Child (0) = 0

with binary address (2,000);
Step 1 T=d-1=4-1=3; Start = Node = 242 = 4 with Step 10: Node # 2/2-1; Stepll: Plus = true;, Minus =
binary address (3,110); Counter = 1. False;
Step2 : Minus = false; Plus = false; Careful = false. Step12: Counter # 2; Step 13: Careful and Node #0;
Step3 : I # 0, gotostep 4 Step 4: Node # (2'/2)-1; go Step 14 Minus = False; Step 15: Node = 0+1 = 1;

to step 5.

2668

Counter=1+1 =2

J. Applied Sci., 7 (18): 2666-2670, 2007

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:

Step 7:
Step 8:

Step 9:

Step 10:

Step 11:
Step 12:

Step 13:
Step 14:
Step 15:
Step 16:

Here we define the start node. I = d; Start Node = Node = 242; Counter =1;

Minus = false; Plus = false; Careful = false.

If(I=0) goto step 9

If Wode = (2'/2) -1 Then Minus = true; Plus = false; goto step 6.
If (Node = (2%2) Then Plus = true; Minus = false;

If (Counter = (2//2) Then Counter = 1; Node = Parent (Node); go to step 3.
(We find the parent node by decrement the level I by 1 I=1-1 and shift right one bit the binary address of that node then get its equivalent address

in decimal)

If (minus) Then Node = Node-1; countert+; go to step 6.
Node =Nodet+1; Counter++; go to step 6.

(Here we will go to the left sub tree of the root)

Node = Left Child (Node); Counter =1;

(We get left child by increment the level I by 1, [++ and shift left the binary

address of that node and then get its equivalent address in decimal).
If (Node = (2%2-1) OR (Node = 242-2 AND I == 3)) Then
Minus = true; Plus = false; go to Step 12.
Plus = true; Minus = false;
If (Counter = 2/2) Then Counter = 1;
If (I =d-1) and (Node = 2Y/2-1)) go to step 16;
Else If (T = d-2 AND d-1 is Odd Number) Then
Node = right Child (Node); Carefill = true; go to step 10

(Get Right child by increment the level T by 1, T++ and shift left the binary address of the
node and increment it by 1 (right child) and then get its equivalent address in decimal).

Else
Node = left Child (Node) go to step 10.
If (Careful AND Node = 0) Then Node = 2Y/2-1 goto step 16.
If (Minus) Then Node = Node -1; Countert+; go to stepl2.
Node = Node + 1; Counter++; go to step12.
Node = Start Node.

(Here we embedded a linear array and the last node is 2%/2-1 so connect it with start node, which is 2¥2 to get Ring)

Fig. 5: Mapping algorithm

Fig. 6: Mapping a ring with 2%'-1 nodes into a TH (2, 3)

Stepl12

If Counter = (2Y2) Then Counter=1;1= =d
-2 =4-2 =2 and d-1 3 is odd then Node =
Right Child(1) with binary address (2,001), 1=
2+1 = 3; Shift left(001) = 010 +1 = 011 then
child node = Node = 2 with binary address
(3,011); Careful = true;

Step 10

Step 12
Step 14

Step12

2669

Node = (22-10R Nede = (2%2-2andI>=3;
Minus = true; Plus = false;

Counter # 4; Step 13: Careful and Node # 0
Minus = true; Node = 2-1 = 1 with binary
address (3,001); Counter = 1+1 = 2;

Counter # 4; Step 13: Careful and Node = 0;

J. Applied Sci., 7 (18): 2666-2670, 2007

Step 14 : Minus = true and Node = 1-1 = 0 with binary
address (3,000); Counter = 2+1 = 3;

Stepl2 : Counter # 4;

Step 13 : Careful and Node = 0, Nede = 2%2-1 = 4-1=3;
Counter = 3+1 = 4;

Step 12 : TIf Counter = 2Y2) =4 Then Counter=1,1 ==
3 AND Node = =3,

Stepl6 : Node = Startnode = 4;

CONCLUSIONS

The problem of mapping mnterconnection topologies
in tree-hypercube network did not receive sufficient
attention from researchers. The tree-hypercube network,
which combines the advantages of both trees and
hypercube, can emulate many interconmection topologies
such as linear array, ring, tree, hypercube and meshes
topologies. We have proposed a new efficient approach
for mapping ring onto tree-hypercube. We test our
proposed algorithm onto a tree-hypercube of size TH(2,3)
(ie, 2™(3+1) -1 =15nodes) and a ring to be mapped of
size 15, which result in a Hamiltonian cycle that utilized
every node in targeted system (tree-hypercube) for that
system 1s fully utilized. We calculated as shown
previously in section four that the dilation factor of one,
which indicates that we have one to one mapping as a
result intercommunication between nodes, was reduced to
one. Smce our proposed algorithm result of a dilation of
one it did not just only optimized the communication cost
(one hop communication) it also result in an optimal
solution to the congestion factor.

REFERENCES
Caha, R. and V. Koubek, 2005, Hamiltoman cycles and

paths with a prescribed set of edges in hypercubes
and dense sets. J. Graph Theory, 51: 137-168.

Chang, H.Y. and R.T. Chen, 1997. Embedding cycles in TEH
graphs. Inform. Proc. Lett., 64: 23-27.

Goldie, A'W. and G. Krause, 1996. Embedding rings
with Krull dimension in artiman rings. J. Algebra,
182: 534-545.

Gupta, A., 2000. Embedding trees into low dimensional
Euclidean Discrete Comput. Geom.,
24: 105-116.

Johnson, SL., 1987. Commumnication efficient basic linear
algebra computations on hypercube architectures.
J. Parallel Distributed Computing, 4: 133-172.

Kurose, I.F. and K. W. Ross, 2005. Computer Networking,
A Top-Down Approach TFeaturing the Internet.
Pearson Education, Inc.

Leighton, F.T., 1992. Introduction to Parallel Algorithms
and Architecture: Arrays, Trees, Hypercubes.
Morgan Kaufmann, SanMateo, CA.

Omari, M. and H. Abu-Salem, 1997. Tree-Hypercubes: A
Multiprocessor Intercommection Topology. Abhath
Al-Yarmouk, 6: 9-24.

Ouyang, P. and K.V. Palem, 1991. Very efficient cyclic
shifts on hypercubes. Proceedings of Symposium on
Parallel and Distributed Processing, pp: 556-563.

Qatawneh, M., 2005. Embedding linear array onto
tree-hypercube network. Eur. J. Sci. Res., 10: 2.

Qatawneh, M., 2006. Adaptive Fault Tolerant Routing
algorithm in Tree-Hypercube Multicomputer. 7.
Comput. Sci., 2: 124-126, USA.

Tsai, C.H., 2004, Linear arrays and rings embedding in
conditional faulty hypercubes. Theor. Comput. Sci.,
pp: 431-443.

spaces.

2670

	JAS.pdf
	Page 1

