Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 7 (18): 2691-2695, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

An Efficient Pattern Matching Algorithm

Azzam Sleit (previously, Azzam Ibrahim), Wesam AlMobaideen, Aladdin H. Baarah and Adel H. Abusitta
Department of Computer Science, King Abdullah 1T School for Information Technology College,
University of Jordan, Amman, Jordan

Abstract: In this study, we present an efficient algorithm for pattern matching based on the combination of
hashing and search trees. The proposed solution 1s classified as an offline algorithm. Although, this study
demonstrates the merits of the technique for text matching, it can be utilized for various forms of digital data
including images, audio and video. The performance superiority of the proposed solution is validated

analytically and experimentally.

Key words: Pattern, matching, hashing, text matching, preprocessing

INTRODUCTION

Pattern matching 1s a basic problem in computer
science which occurs naturally as part of data processing,
information retrieval and speech recognition. String
(or text) matching 1s a special case of pattern matching,
where the pattern is described by a finite sequence of
symbols (or alphabet) X. Tt consists of finding one or all
the occurrences of a pattern P of length m in a pattern
database T consisting on n patterns, where m and n > 0.
Both P and T are built over the same alphabet X.

Numerous solutions to the pattern matching problem
have been proposed (Aho, 1990). Pattern matching
algorithms are classified mto online and offline solutions.
Omnline solutions are dynamic and do not require a priori
knowledge of the patterns database T. Preprocessing may
be performed on P. In general, an online algorithm
consists of two phases: The preprocessing phase of P
and the search phase of P 1 T. During the preprocessing
phase, a data structure X is constructed which is
usually proportional to the length of the pattern and
details vary for different algorithms. The search phase
uses the data structure X and tries to quickly determine
if the pattern occurs in the text. This phase is typically
based on four different approaches including classical,
suffix automata, bit-parallelism and hashing. However,
offline solutions are based on preprocessing activities
performed on the patterns database T in preparation
for the matching process. This study proposes a hash-
table based solution for the pattern matching problem.

Classical text matching algorithms are based on
character comparisons. The Brute-Force algorithm
(Cormen et al., 2003) (in short, BF algorithm) performs
character comparisons between a character in the text P

and each character in the pattern database from left to
right. Tn any case, after a mismatch or a complete match of
the entire pattern 1t shifts exactly one position to the right.
It requires no preprocessing phase and no extra space.
The BF algorithm has O (mn) worse-case time complexity.
The average number of character comparisons is
n(1+1/(|%]-1)). The Knuth-Morris-Pratt algorithm (in short,
KMP) (Knuth et ai., 1977), which was the first linear time
string matching algorithm discovered, performs character
comparisons from left to right. Tn case of mismatch, it uses
the knowledge of the previous characters m order to
compute the next position of the pattern to use. Boyer-
Moore algorithm (also recognized as BM) (Boyer and
Moore, 1977) is known to be very fast in practice. It
performs character comparisons between a character in
the text and a character in the pattern database from right
to left. After a mismatch or a complete match of the entire
pattern, it uses two shift heuristics to shift the pattern to
the right. Finally, the expected performance of the BM
algorithm 1s sub linear requiring about n/m character
comparisons on average. The Boyer-Moore-Horspool
(BMH) algorithm does not use the match heuristic
{(Horspool, 1980). In case of mismatch or match of the
pattern, the length of the shuft 13 maximized by using
only the occurrence heuristic for the text character
corresponding to the rightmost pattern character (and
not for the text character where the mismatch occurred).
The Quick Search (QS) algorithm performs character
comparisons from left to right from the leftmost pattern
character and in case of mismatch it computes the shift
with the occurrence heuristic for the first text character
after the last pattern character by the time of mismatch
(Sunday, 1990). The preprocessing and searching time of

Corresponding Author: Azzam Sleit (previously, Azzam Ibrahim), Department of Computer Science,
King Abdullah IT School for Information Technology College, University of Jordan, Amman, Jordan
2691

J. Applied Sci., 7 (18): 2691-2695, 2007

Table 1: Time and space requirements for various matching algorithms

Category

Algorithm Preprocessing phase (Time requirements)

Searching phase (Time requirements) Space requirements

Classical approach BF — O (mn) —
KMP 0 (m) 0 (n) 0 (m)
BM O (mtZ) O (mn) O (mtL)
BMH O (m+ 2D O (mn) 0z
Qs O (m+[Z[) O (mn) Oz
BMS O (m+ 2D O (mn) 0z
TBM O(m+ 0) O{m+[E)
Suftix automata approach RF 0 (m) 0 (mn) 0 (m)
Bit parallelism approach 50 O ((mHZ) [m/w]) O (n [m/wT) O(m [Z))
BNDM O (m+ 2 O (mn) O(mE)
Hashing approach KR O (m) O (mn) Constant

the QS algorithm is same as the BMH algorithm. The
Boyer-Moore-Smith (in short, BMS) algorithm, noticed
that computing the shift with the text character just next
the rightmost text character gives sometimes shorter shift
than using the rightmost text character (Smith, 1991). The
Turbo-BM (in short, TBM) (Crochemore ef al., 1994)
mtroduced a vanation for the BM algorithm. It consists of
remembering substring of the text that matched a suffix
of the pattern during the last character comparisons
(and only 1f a good suffix shuft has been performed).

The second category 1s based on the suffix automata
approach which uses the suffix automaton data structure
that recognizes all the suffixes of the pattern. The Reverse
Factor (in short, RF) algorithm performs the characters of
the text from right to left usmng the smallest suffix
automaton of the reverse pattern (I.ecrog, 1992).

Bit parallelism is the third category which uses the
mtrinsic parallelism of the bit mampulations mnside
computer words to perform many operations i parallel
(whose number of bits in the computer word we denote
w). This technique has become a general way to simulate
simple Nondetermimstic Finite Automata (NFA) instead
of converting them to deterministic. The basic idea of the
first Shift-Or (in short, SO) algorithm (Baeza-Yates and
Gonnet, 1992), is to represent the state of the search as a
number and each search step costs a small number of
arithmetic and logical operations, provided that the
numbers are large enough to represent all possible states
of the search. Anocther algorithm of the bit parallelism
activity 1s called Backward Nondetermimstic Matching
(BNDM) (Navarro and Raffinot, 1998). This algorithm uses
a nondeterministic suffix automaton that is simulated
using bit parallelism.

The fourth category of pattern matching 1s based on
hashing. The Karp-Rabin (in short, KR) algorithm 1s based
on hashing. Hashing provides a simple method to avoid
a quadratic number of character comparisons in most
practical situations (Cormen et af., 2003). The main 1dea of
the KR algorithm 1s to compute the signature or hashing
function of each possible m-character substring in the text
and check if it i3 equal to the signature function of
the pattern. Table 1 summarizes the algorithmic run-time

requirements of the previous algorithms taking into
account preprocessing phase, search phase and space.

PATTERN MATCHING TECHNIQUE

Here it 15 mtroduced a two-phase hash-table based
pattern matching techmque. In the first phase, an index
structure is created for the database to be used during the
pattern matching phase (i.e., second phase). Although,
the proposed techmque 1s suitable for the general pattern
matching problem, this study will investigate its merits
particularly with respect to text matching.

The index structure: Our mdex structure 1s a two-
dimensional hash table H with dimension |X| X m, where
¥ is the set of alphabet constituting the patterns database
and m is the maximum number of alphabet symbols that a
pattern can have in database. A pattern P 13 expected to
be found m H(I, j) if and only if |P| = j and I 1s the cutcome
of function F when applied on the first symbol of pattern
P. For the purpose of indexing a database of text strings,
the function F can be defined as the corresponding ASCIT
code of the first character of the pattern. For every H(T, j),
there will be several database patterns (strings) which will
be organized as a binary search tree. ITn other words, all
patterns (strings) starting with the same alphabet symbol
{(character) will be mapped to the same cell in the two-
dimensional hash table. Moreover, those strings mapped
into the same cell H(T, j) in H will be organized into the
same bmary search tree based on the followmg key
calculation rule:

Key(P) = 1 *ASCTI(p)+2*ASCII(p,)
+3*ASCII(p,) + ... +j*ASCIL(p) (1)

where, P is the pattern <p,, p,. ps. ..., P&

For a database of N English strings, the following
1ssues must be taken mnto consideration during the
preprocessing phase:

+ For every string in the database, three things must be
calculated:

2692

J. Applied Sci., 7 (18): 2691-2695, 2007

* The ASCT code corresponding to the first
character of the string (1.e., row I of the hash

table).

» The length of the string (1.e., column j of the
hash table).

» The corresponding key of the string based on
formula (1).

¢ Create a one balanced binary tree for each hash table
cell H(T, j) based on the keys calculated in 1(a) for the
strings mapped into H(T, j).

Example: Consider the following database consisting of
twelve patterns.

the Rabin Karp algorithm seeks to speed up searching
the text.

Table 2 presents the outcome of step 1 of the
preprocessing activities required for building the index.
The table summaries information, which will be inserted
mto the mdex structure. Figure 1 displays the complete
mdex including the hash table and the bmary trees
corresponding to the database.

Pattern matching algorithm: In order to search for a
pattern P = <p,, ps Ps. p7> in the database using the
index, the following must be calculated:

¢ The ASCII code of the first character in P; namely:
pl, denoted by L.

¢ The length of the P, denoted by m.

* The sum of the ASCII code of the characters that
form the pattern uwing formula (1), denoted
sumASCILL

The search process for the pattern P featured by m,
L and sumASCII 15 as follows:

Table 2: Preprocessing activity for building the index on the example

database

ASCCII Position

code of first in the text Length
Word character (L) (index) (m) sumAS CI
the 116 1 3 321
Rabin 82 5 5 495
Karp 75 11 4 398
algorithm 97 16 9 867
seeks 115 26 5 539
to 116 32 2 227
speed 115 35 5 560
up 117 41 2 229
searching 115 44 9 918
in 105 54 2 215
the 116 57 3 321
text 116 61 4 453

Length of words in the text
123456789 101112131415
65
75 Oy 1
82 q Tl Sum Index

Sum Index

|453|Text| 61 |

Fig. 1: Index structure for example databas

» Access H(L, m) to get the pomter to the binary
search tree which may contain P.

¢ Use sumASCII as the search key to search the binary
search tree. If the value of sumASCII 1s found, the
corresponding pointer 1s utilized to locate P in the
database.

¢ Additional occurrences of P may be retrieved by
following the left child pointer of the node until a
node with a different search key has been found.

ANALYSIS

Now it 18 analyzed the performance of the proposed
algorithm worse and average case behavior. Tt is obvious
that H has |% | rows and m columns, where || is the size of
the alphabet and m 1s the maximum number of symbols
that a pattern can have. Accordingly, there are |X|*m cells
in the hash table.

Average case behavior of search: For a database of N
patterns, assume that the patterns are equally distributed
onto the hash table cells. Tt is expected that our search
algorithm will have its typical behavior.

Lemma: The average run-time of the search algorithm 1s
O(lg NA1Z[*m)).

Proof: The proof stems from the fact for a database of N
patterns, 1t 1s expected that N/A(|Z[*m) patterns are mapped

2693

J. Applied Sci., 7 (18): 2691-2695, 2007

into each cell of H. Since the preprocessing phase has
complete a priori knowledge of all patterns and their
mappings, balanced binary search trees will be created
with logarithmic height. Consequently, the average
run-time of the search algorithm is O(lg N/(|%[*m)).

Worst case behavior of search: It 13 not expected that all
N patterns of the database are mapped into one cell of the
hash table. The search algorithm will have its worst
performance.

Lemma: The search algorithm does not behave any worse

than O(lg N).

Proof: Assuming that all N patterns of the database
are mapped mto one cell, the cell will point to a large
binary tree with height 1g N. Consequently, the search
algorithm does not behave any worse than the time
complexity O(lg N).

Space requirements: It 15 obvious that most of the
required space for the proposed techniques is attributed
to the binary search trees.

Lemma: The space requirements of the proposed
techmique 18 O(N+ ||*m).

Proof: The index structure consists of a hash table and
binary trees. The hash table requires d*(|Z|*m) bytes,
where d 13 the number of bytes needed for each cell.
Concerning the binary trees, each pattern in the database
will be stored in a node of a binary search tree.
Consequently, ¢*N bytes are required for the bimnary
search trees, where ¢ is the number of bytes required
to store the contents of a node in the tree.
Therefore, the index requires (d*(|%[*m) + ¢*N) bytes or
simply, OON + (| ZP*m).

The suffix array 1s an offline mechamsm which can be
obtained by collecting the leaves of the suffix tree in left-
to-right order (assuming that the children of the suffix tree
nodes are lexicographically ordered left-to-right by the
edge labels). However, 1t 1s much more practical to build
them directly. In principle, any comparison-based sorting
algorithm can be used, as it is a matter of sorting the n
suffixes of the text, but this could be costly especially if
there are long repeated substrings within the text. There
are several more sophisticated algorithms, from the
original O(nlog n) time (Manber and Myers, 1993) to the
latest O(n) time algorithms (Kim et al., 2005). In practice,
the best curent algorithms are not linear-time ones

(Manzini and Ferragina, 2004). Gonnet et ol (1992)
demonstrated that suffix arrays are more powerful than
offline mdexing based on inverted files.

From the previous discussions, it 13 clear that
proposed solution 1s more superior to all the algorithms
presented in Table 1 in addition to the offline suffix array
in terms of the speed of pattern matching. However, the
space required for the hash table and binary search trees
tends to be higher than space requirements of the other
algorithms. We believe that our proposed technique is
well suited for large databases of patterns. For such
environments, it is quite natural to define additional data
structures such as indexes for the benefit of better search
response time. Furthermore, binary search trees can be
replaced by secondary-storage mndex structures such as
B*-Trees.

RESULTS AND DISCUSSION

In order to experimentally assess the performance of
our pattern matching algorithm relative to other
algorithms, we selected two English dictionaries; namely:
Mawrid and Wafi to represent two independent
databases. Mawrid and Wafi dictionaries are of size 1, 012,
015 and 2, 325, 663 characters long, respectively. The
speed of pattern matching (in terms of number of
comparisons) was compared to those of Boyer-Moore
(BM), Quick Search (Q8S), Reverse Colussi (RC) and
Apostolico-Giancarlo (AG) algonitluns. The BM algorithm
15 known to be very fast in applications while the QS
algorithm 1s fast in practice for short patterns and long
alphabets. Both of the RC and AG algorithms are
variations of the BM algorithm.

Present experiment considered pattern lengths
ranging from 2 to 15. For every pattemn length in the
specified range, we randomly picked 1000 patterns which
actually exist in the databases and ran our implementation
for all five algorithms. For every algorithm and per pattern
length in the range, the average mumber of comparisons
was accumulated. The average numbers of comparisons
for each pattern length 1s shown in Fig. 2 and 3. The
performances of all five algorithms (in terms of
number of comparisons) for the selected pattern
lengths are displayed in Fig. 2 (Mawrid database) and 3
(Wafi database). The proposed solution in this study
outperforms the other four algorithms especially for the
larger database (i.e., Wafi). This is also true when the
mumber of patterns of a specific length is large. This
happens for pattern length ranging between 5 and 15
since English words of lengths between 5 and 15 are
very frequent.

2694

J. Applied Sci., 7 (18): 2691-2695, 2007

450 —— BM
-= QS
400+ —i— RC

= AG

3507 —0— Present algorithm

w

o

o
L

250+

[

=

=
1

Average No. of comparisons

—
Lh o th
(=] o o
1 i 1

o

Fig. 2: Pattern length versus average No. of comparisons
on mawrid database

900
—— BM
8001 - QS
i T
i 6004 —0— Present algorithm
E 500-
a
g 400
Eu 300
Z 2007
1007 OOOOOW%“
v T 1
0 10 20
The pattern size

Fig. 3: Pattern length versus average No. of comparisons
on wafl database

CONCLUSION

This research presents a new solution for pattern
matching using an auxiliary mdex data structure. The
runtime performance of the proposed pattern Matching
algorithm 1s logarithmic which 1s far better than the exiting
onlime and offline algorithms which tend to have linear
time complexities at best. The study presented a
mathematical analysis for the average and worse case
behavior of the proposed solution. Moreover, four
algorithms were experimentally compared to the proposed
algorithm in terms of the average number of comparisons
per pattern length. The experimental results demonstrate
superiority of the algorithm for large databases with high
frequency pattern lengths.

REFERENCES

Aho, AV, 1990. Algonthms for Finding Patterns in
Strings. Handbook of Theoretical Computer Science.
Leeuwen, I. van (Ed.), Elsevier Science Publishers,
Amsterdam, pp: 255-300.

Baeza-Yates, R. and G.H. Gonnet, 1992. A new approach
to text searching. Commun. ACM, 35: 74-82.

Boyer, R.S. and I.S. Moore, 1977. A fast string searching
algorithm. Commun. ACM., 20: 762-772.

Cormen, TH., CE. Leiserson, R.L. Rivest and C. Stein,
2003. Introduction to Algorithms. MIT Press.

Crochemore, M., A. Czumaj, L. Gasieniec, S. Jarominek,
T. Lecrogq, W. Plandowski and W. Rytter, 1994
Speeding up two string matching algorithms.
Algorithmica, 12: 247-267.

Gonnet, G.H., R. Baeza-Yates and T. Snider, 1992. New
mdices for text: PAT trees and PAT arrays. In:
Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, Englewood Cliffs, NI,
pp: 66-82.

Horspool, RN., 1980. Practical fast searching in strings.
Software Pract. Exp., 10: 501-506.

Kim, D. and H. Park, 2005. A new compressed suffix
tree supporting fast search and its construction
algorithm wusing optimal working space. In:
Proceedings of the 16th Annual Symposium on
Combinatorial Pattern Matclhing (CPM), Lecture
Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 3537: 33-44.

Knuth, D.E., I.H. Morris and V.R. Pratt, 1977. Fast pattern
matching in strings. STAM I. Comput., 6: 323-350.

Lecrog, T., 1992, A variation on the Boyer-Moore
algorithm. Theor. Comput. Sci., 92: 119-144.

Manber, U. and G. Myers, 1993, Suffix arrays: A new
method for on-line string searches. STAM T. Comput.,
22: 935-948.

Manzimi, G. and P. Ferragina, 2004. Engineering a
lightweight suffix array construction algorithm.
Algorithmica, 40: 33-50.

Navarro, G. and M. Raffinot, 1998. A bit-parallel approach
to suffix automata: Fast extended string matching. In:
Proceedings of the Sth Anmnual Symposium on
Combinatorial Pattern Matching, Springer-Verlag,
Berlin.

Smith, P., 1991. Experiments with a very fast substring
search algorithm. Software Pract. Exp., 21: 1065-1074.

Sunday, D., 1990. A very fast substring search algorithm.
Commun. ACM, 33: 132-142.

2695

	JAS.pdf
	Page 1

