Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 7 (19): 2736-2743, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

Path Query Processing in Large-Scale XMI. Databases

Su-Cheng Haw and G.3.V. Radha Krishna Rao
Faculty of Information Technology, Multimedia University, 63100 Cyberjaya, Malaysia

Abstract: With the ever-increasing popularity of XML (Extensible Markup Language) as data representation
and exchange on the Internet, querying XMI. data has become an important issue to be address. In Native XML
Database (WXD), XML documents are usually modeled as trees and XML queries are typically specified in path
expression. In path expression, the prunitive structural relationships are Parent-Child (P-C) and Ancestor-
Descendant (A-D). Thus, finding all occurrences of these relationships is crucial for XML, query processing.
Current methods for query processing on NXD usually employ either sequential traversing of tree-structured
model or a decomposition-matching-merging processes. We adopt the later approach and propose a novel
hybrid query optimization technicue, TINL AB comprising both indexing and labeling technologies. Furthermore,
we also propose several algorithms to create INLAB encoding and analyze the path query. We implemented
our technique and present performance results over several benchmarking datasets, which prove the viability

of our approach.

Key words: XML databases. query processing, path query, indexing, labeling

INTRODUCTION

Due to its flexibility and efficiency in transmission of
data, Extensible Markup Language (XML) has become the
emerging standard of data transfer and data exchange
across the Internet. As the amount of exchanged data
often grows exponentally via the Web medium, this
drives the requirement for storing and querying
large-scale XML databases as efficient as possible
(Haw and Rao, 2005).

There are two main approaches for query processing
in Native XML Database (NXD). The first approach is to
traverse the XMI. database sequentially to find the
matching pattern. Every node in the XML database needs
to be evaluated for possible matches. Thus, this approach
certainly poses a new challenge, because it may not meet
the processing requirements under heavy access requests
(Li and Moon, 2001). Furthermore, it fails to support
large-scale dataset efficiently. As a result, index structures
have been introduced to address the problem of
performance degradation due to excessive traversal.
Among them are DataGude (Goldman and Widom, 1997),
T-index (Milo and Suciu, 1999), Alkindex (Kaushik et al.,
2002), Index Fabric (Cooper et al., 2001), APEX Index
(Chung et al., 2002), D(k)-index (Chen et al., 2003) and
M*(k)-index (He and Yang, 2004). These are general path
indexes that summarize all paths in Object Exchanged
Model (OEM) starting from the root to the respective
node. T-index selects paths based on specific templates,
while APEX, A(k)-index, D(k)-index and M*(k)-index
select the most frequently used paths in queries by

restricting the path length to k. The D(k)-index and M*(k)-
indexes are more dynamic in the sense of they are based
on the notion of the dynamic local similarity, which means
different index nodes may have different local similarity to
support frequently used path expressions. Unlike the
other approaches, Index Fabric encodes its label path as
string and stores them in a balanced Patricia trie. Recently,
Zou et al. (2004) propose Ctree, a two-level tree index
which provides a concise structure summary. Lian et al.
(2005) propose MIS index, an index structure which index
infrequent structures in the database instead. Yan and
Liang (2005) propose MXI, an indexing method that
support efficient path query based on embedded Data
Type Definition (DTD). Kiss and Anh (2005) combine
both structural and tree structure index to accelerate the
query processing. Nevertheless, all these approaches
suffer from large index size growth As for INLAB
indexing, in the worst case, the index size grows linearly
with the XML tree. Further elaboration will be discussed
1n next section.

To overcome the shortcomings of structural indexing,
several labeling scheme have been proposed. Labeling
scheme allow quick determination of the relationships
among the element nodes. Among some of the labeling
schemes are tree location address (Kimber, 1993) and
simple prefix (Cohen et al., 2002) which utilize prefix
checking for possible A-D relationship; GRP (Luand Ling,
2004) which based on group prefix; prime mumber labeling
(Wu et al., 2004) which check for relationship based on
prime number property and ORDPATH (O'Neil et al.,
2004) which the concept s similar to Dewey Order

Corresponding Author: Su-Cheng Haw, Faculty of Information Technology, Multimedia University, 63100 Cyberjaya, Malaysia
2736

J. Applied Sci., 7 (19): 2736-2743, 2007

(Tatarinov et al., 2002) that encodes the Parent-Child
(P-C) relationship by extending the parent label with a
component for the child. Recently, Thonangi (2006)
propose Sector-based labeling scheme. For example, node
A is assigned with label <Ar, As> where 2* is the radius
of the sector and As is the radial-distance of the starting
point of the sector with respect to the reference-axis.
Although, such representation requires considerably
smaller length as only the logarithm of the sector’s radius
is stored, the label computation is rather expensive.
Zhang et al. (2004) propose an encoding scheme called as
ES-Index, extending Dietz’s labeling scheme (Dietz, 1982)
based on prefix and unique gene labels to quickly
determines the siblings-siblings
Descendant (A-D) relationship. As summary, although
some labeling schemes (Wu et af., 2004, O'Neil et al,
2004; Thonangi, 2006) are able to support dynamic
update, they still face the similar problem of having large
labeling sizes especially if the XML tree 13 dense or skew
structure. In our labeling scheme <self-level: parent>, the
size of the labelled node is only 12 bytes. In addition, our
labeling is integer based. Integer processing is very
efficient compared to that of string or bit-vector.

The second approach is to preprocess the XML
database to a set of data streams as the mput document
and executed through a series of processes involving
decomposition, matching and merging. Firstly, a complex

and Ancestor-

query pattern can be decomposed into a set of basic
binary structural relationships between pairs of nodes.
These structural relationships could be of A-D or P-C
relationship. The query pattern can then be matched by
matching each of the binary structural relationship against
the data streams. Zhang et al. (2001) propose MPMGIN
while Bruno et al. (2002) and Al-Khalifa et ol (2002)
propose PathStack and Stack-Tree algorithm, respectively
to match the binary structural relationships. The main
difference between MPMGIN and both PathStack and
Stack-Tree 1s that MPMGIN require multiple scans on
input lists for the matching process. The PathStack
algorithm is more efficient as it uses stack to maintain the
ancestor or parent nodes and it require only one time scan
per input list. The Stack-Tree algorithm uses an
adaptation of a merge-sort technique and supports both
path and twig query. These algorithms accepts two lists
of sorted individual matching nodes and structurally join
pairs of nodes from both lists to produce the matching of
the binary relationships (Yao and Zhang, 2004). Yet, these
approaches still suffer from producing large size of
mtermediate results. To address this problem, Bruno et al.
(2002) propose TwigStack, a holistic twig join algorithm
that uses a chain of linked stacks to compactly represent
the intermediate results and subsequently join them to

obtain the final results. However, this algorithm is only
optimal for A-D relationship. Lu et @l (2004) extend
TwigStack and propose TwigStackTist, which can support
both P-C and A-D relationship efficiently. Next, these
matches are merged together to form the final path
solution. Merging together the structural matches in the
final process poses the problem of selecting a good join
ordering. Wu et al. (2003) propose a cost-based join order
selection of structural join. Kim et al. (2004) propose a
technique to partition all nodes in an extent mto several
clusters. Given two extents to be joined, the proposed
technique filters out unnecessary clusters mn both extents
before joining.

Some other XML query processing performed in a
streaming fashion include XMLTK (Green et al., 2003),
XSQ (Peng and Chawathe, 2003) and EXPedite
(Chen et al., 2004). While XMLTK process queries using
a Deterministic Finite Automaton (DFA) that are
constructed lazily, XSQ process queries on streaming
XML data using a hierarchical pushdown transducer
(HPDT). Using the HPDT as a guide, a runtime engine
responds to the incoming stream and emits the query
result. In EXPedite, however, the XML database is
encoded as streams with label (t, size, depth). EXPedite
uses stack to store each qualified node during the
matching process.

In this research we adopt the decomposition-
matching-merging approach and propose a novel hybrid
query processing technique, INLAB comprising both
indexing and labeling technologies to evaluate the path
query. This technique guaranteed that every intermediate
result participate in the final results. Our contribution can
be summarized as follows:

» The proposed INLAB labeling scheme can be used
for determiming the two main types of priumitive
relationships in a path query: (i) A-D and (ii) P-C
efficiently.

¢ The proposed PathINLAB query processing
algorithms process queries without traversing the
whole XMI. database. We show the substantial
performance benefits of our approach on various
datasets.

Overview of INLAB: ITn NXD, OEM is usually used to
model the data. It can be viewed as a rooted, ordered,
node-labeled tree where each node represents an element
or a value. For the sample XML document of Fig. 1a, its
OEM representation is shown in Fig. 1b.

INLAB labeling scheme: Tn INLAB labeling scheme,
given an XML tree T, any label consists of <self-level:
parent> representation, where (i) self attribute is obtained

2737

J. Applied Sci., 7 (19): 2736-2743, 2007

< publications >
< book >
< title > XML Fundamental < /itle >
< chapter >
< title > What js XML < /itle >
« gection >
< text > < fext >
< figure > < /figure >
« fgection >
< fchapter >
< fhook >
< journal >
< title > XML Databases < ftitle >
< figure > Fig 1 < /figure >
< fjournal > '
< /publications >

®

book (1-1:0) joumal (8-1:0)
title chapter umm
Q-2:1) @21y (9-2:8) (10-2:8)
title section
@33 639
tend figure
(6-4:5) 74:5)

Fig. 1: (a) A sample XML document (b) OEM representation

Algorithm 1: create INLAB encoding
1. finction createTNLAB
2. input:an XML file X
3. output : encoded XML assigned tag
4. /*A stack eleStack to keep track of element sequence.
5. A vector vExtent to store the occurrence of each element in stream
6. A hashtable eleTable to store each distinct element in X.
7 A hashtable PCTable to keep track of each element parent’s
information
8 A record with <self-level : parent> */
9. intptr=0, level = 0, self = 0, parent = -1
10, cuwrRec =null
11. while (! eof (X)) do {

12, if 8AX event = a start tag <T> then {

13. if (tag has yet been stored into eleTable) {

14. create new instance of vector, vExtent

15. eleTable.put(tag, ptrt++)

16,)

17. create new instance of record, curRec

18. curRec.self = self++

19. curRec.level = level++

20. it (eleStack.size() = 0)

21. curRec.parent = eleStack. elemnent At(eleStack.size()-
1).5elf

22, else

23. curRec.parent = -1

24. int i = eleTable. get{tag).intValue

25. vExtent[i].addElement(curRec)

26. eleStack.push(curRec)

27.)

28. if SAX event = an end tag </T> then {

29, eleStack.pop()

30. curRec = eleStack.peek ()

31. level --

32. 3

33.

34. } /fend function

35.

36. function output {

37 input:tag in XML file X and cursor position in data stream

38 output : encoded XML data streams(files)

39, create file fileData = (“myData*+tag, with read and write
mode)

40, int self, level, parent

41. while (as long as cursor NOT end of stream) {

42, self = cursor.getCurSelf

43, level = cursor.getCurLevel

A4, parent = cursor. getCurParent

45, writelnt(fileData, self, level, parent)
A6, PCTable.put(self, parent)

47. }

48. } Hend function

by doing a pre-order traversal of the XML tree, T (i1) level
attribute of a node 1s its distance from the root and (1i1)
parent attribute 1s the direct node which relates to the
self node. Figure 1b depicts the INLAB labeling
representation for an XML tree.

Analysis of createINLAB encoding algorithm:
Algorithm 1, createINLAB() takes a regular XMI,
document and generates a set of encoded XMI. data
streams (files). Each element with the same tag is grouped
into one data stream. Figure 2a and b show the fragment
of data streams and index table, PCTable generated based
on the sample XML, docum ent in Fig. 1la. To parse the
XML document, INLAB parser starts from the begimming
of the root element, sequentially iterates over the rest of
the elements to generate positional representation of each
element using INLAB labeling scheme.

Structural relationships between nodes can be
efficiently determined form the label as follows:

P-C relationship: node, i3 the parent of node, iff
node,.self = node,.parent.

A-D relationship: node, is possible as an ancestor of
node, iff level difference, leveldiff = node,level-
node, level >= 1. A multiple look-up via PCTable Fig. 2b
1s necessary as long as the leveldiff > 1 15 true to confirm
the A-D relationship.

For example, let publications <0-0:-1> be node, and
title «<2-2:1> be node,. The leveldiff between the two
nodes 1s 2. To determine whether these two nodes 1s of
P-C relationship, we need to hash PCTable (Fig. 2b) twice
(two level up). The retrieved node parent attribute is 0
and 1t 1s equal to the self attribute of publications, which
15 also 0. Thus, publications and title 15 of A-D
relationship.

Analysis of pathINLAB processing algorithm:
Algorithm 2, PathINLAB() computes answers to a path
query pattern. The key idea of this algorithm is to

2738

J. Applied Sci., 7 (19): 2736-2743, 2007

PC Table
Salf Parent
[-1
cleTable 1 0
T 7 3 -
s+ e —H
5 | 22:1 433 923 | 4 3
\Aw 3 9 3
3.2:1 | 10 8
(&))

Fig. 2: (a) Fragment of generated data streams (b) fragment of index table

Algorithm 2 : PathINLAB Processing

1. function PathTNLAB(g) {

2. input : INLAB encoding streamns and path query
3. output : Final solution matching to the path query
4. while (! end(q)) do {

5. qSring = getNext{getRoot())

6. if (gString != getRoot())

7. cleanParentStack()

8. if (gString =— getRoot() || stack_size_of parent != empty) {
Q. cleanSelfADStack()

10. moveToStack()

11. it (isLeaf(qString)) {

12. outputSolution()

13. pop()

14. }

15. advance(gString)

16.

17. else advance(qString)

18. } /end while

19. mergeAllPathSolution()

20. } fend function

21.

22. function end(q) {

23, input : leaf node

24. output : Boolean true or false
25, if (isLeaf(q) NOT in eof(Tq))

26. return false
27. elsereturn true
28.)

repeatedly construct stack encoding of partial and total
answers to the path query, by iterating through each
element in the stream in sorted order of their self attribute
starting from the root of the path query (as returned
by getRoot() procedure), by the procedure getNext().
Partial answers from the stacks that cannot be extended
to final answers are removed, n the procedure of
cleanParentStack() and cleanSelfADStack() as in lines 6-9.
Each qualified element that fulfill the matching criteria, 1s
pushed mto stack by the procedure moveToStack() for
further processing. If gString is a leaf query node
(checked by isL.eaf() procedure), the solution should be
output as in lines 11-12. Note that path solutions are
output in root-leaf order so that they can be easily merged
together path matches (procedure
mergeAllPathSolution() in line 19). Once the query node

to form fimal

Algorithm 3 : get next node to be process
1. function getNext(q) {

2. input: current node in process

3. output : node to be process

4. if (isLeaf{q)) return q

5. tempq = getChild(q)

6. n= getNext(ternpq) /recursive call
7. if (n!=tempq) return n

8. while (! checkAncestor(q, n) {

Q. if (getRelf(q) > getlelfin)) retum n
10. advance (q)

1.}

12. if (getSelf(q) = getSelf(n)) retum n

13. return q

14. } /fend function

15

16. function check Ancestor(q, n) {

17, input : two nodes

18. output : boolean true or false

19, leveldift = getLevel(n) — getLevel(q)
20. current = getSelfin)

21, if (getSelfin) !=eof) {

22, if’ (leveldiff= 0) {

23. while (leveldift = 0) {

24. cursorUp = hashPCTable(current)
25. current = cursorUp
26. leveldiff--

27

28 if (current = getSelfiq)) return true

29. else return false

30, }

31. return false

32}

33. return false
34. } /end function

has been processed, lines 13-15 remove the query node
from the stack and advance to the next query node by the
advance() procedure.

Analysis of getNext algorithm: In getNext() algorithm
(depicted in Algorithm 3), if q is a leaf query node
{checked by procedure 1sLeaf()), the function directly
retums to output the solution (line 4). In line 6, we
recursively invoke getNext() function until 1t 1s termmated
by either line 4 or 7. Path query has only one child per
node, thus procedure getChild(q) returns the immediate

2739

J. Applied Sci., 7 (19): 2736-2743, 2007

Spublications
Topioms

publicat | <0-0:-1> I

P

T Sbook

<1-10>

Teno Stitle

<2-2:1 4-3:3 9-2:8>

title

Deotriposition

publications book

book

Fig. 3: Decomposition of path query publications-book-title into binary relationships

Intermediate resulis

=P rublicatins-book

<0-0:-11 4D|m
=tk
<1-'=°>—'&

book title

—

Fig. 4: Matching and merging processes on path query

children of node . In line 7, if any returned node n is not
equal to child of g, we immediately return n. Line 8 skips
node that do not contribute to results, by checking
whether the two nodes 1s of A-D relationship. During this
process (line 24 of checkAncestor() function), the index
table, PCTable (storing P-C relationship) is being hashed
to retrieve each query node’s parent for comparison.
Procedures getSelf() and getLevel() return the self and
level attribute of the query node in the stream. Lines 12-13
return the next node to be process.

Stack operation for PathINLAB processing: Consider a
path query, Q1 = publications/boolk/title on the XMI., tree,
T in Fig. 1a. Associated with each query node, ¢ in Q1 is
a data stream Tq and a stack Sq as shown m Fig. 3. Tq
contains the occurrences of tag q m T. For example,
associated with query node publications are T, . and
S Firstly, Q1 undergoes the decomposition
process. As a result, two sets of binary relationships are

publications*

generated as shown in Fig. 3.

Initially, the binary relationship of publications-book
is to be processed first. Based on the self attribute in each
first ocourrence in T picaes 8nd T o query node
publications 1s returned by the getNext() algorithm.
Element <0-0:-1> is then pushed into S by
procedure MoveToStack(). The next returned query node
15 the immediate child of publication, which is book.
Element <1-1:0> 1s pushed mto 3,,, because parent

publications

‘book-title

licatins-bok-title
merge —bliu(l;-oﬂ 1-1:0 2-2:1>

attribute of book is equal to self attribute of publications.
Since book is the leaf query node, a partial solution is
formed between publications-book.

Next, we process on the book-title relationship. T,
have one occurrence while T,,, have three occurrences.
Based on each first occurrence self attribute, query node
book will be processed first. Element <1-1:0> 15 pushed
mnto Sy, The next retumed query node 1s title. Each
occurrence will be processed in their self attribute order,
that 18 <2-2:1>, <4-3:3> followed by <9-2:8>. Nevertheless,
only element <2-2:1> is qualified being pushed into Sy,
As title 15 the leaf query node, a partial solution i1s formed
between book-title.

Finally, the two intermediate results are being
merged to form the final solution i procedure
mergeAllPathSolution(). Thus, there 13 only one final
solution that fulfills the query criteria. Figure 4 shows the
matching and merging processes.

EXPERIMENTAL EVALUATION

We have implemented INLAB using Java APT for
XML Processing (JAXP). Prelimmary experimental results
to compare PathINLAB with conventional top-down
approach have been reported in Haw and Rao (2007).

Experimental setup: Our experimental tests are divided
into four main test cases described as follow:

2740

J. Applied Sci., 7 (19): 2736-2743, 2007

: Comparing INLAB encoded XML file size over
regular XML

¢ T2 Comparing PathINLAB over conventional top-

down approach, PathStack and X30Q

¢ T3 Comparing PathINLAB processing over
PathStack on a skew structured dataset
¢ T4 Comparing PathINLAB processing over

PathStack on a flat structured dataset

For each test case, we run with certain dataset(s) as
shown in Table 1.

All our experiments were performed on 1.7GHz
Pentium IV processor with 512 MB SDRAM running on
windows XP systems. In test case T2, we benchmarked
PathINLAB with the other approaches by using the set of
queries shown mn Table 2 over the modified TreeBank
dataset. TreeBank dataset is scaled down to
approximately 3MB so that it could be supported by the
conventional top-down approach. In test case T3, the
same set of querties 1s used, but thus time, we benchmarked

Table 1: Various test cases associated with respective dataset(s)

Test case Dataset

T1 Protein, Original TreeBank, Lineltem, Orders (UW, 2002)
Sigmod (Sigmod, 2002)

T2 Moditied TreeBank

T3 Original TreeBank (UW, 2002)

T4 Protein (UW, 2002)

Table 2: Queries over TreeBank dataset

Query Path expression
Q1 S/NP

Q2 §/NPMNN

Q3 S//NP

Q4 VP/NP/PP

Q5 VP/NP/PP/IN

Table 3: Queries over Protein dataset

Query Path expression
01 accinfo/exp-source
Q2 feature/stats
Q3 ProteinEntry/function/description
Q4 organism//source
Q5 ProteinDatabase//protein/name
{a) EProfein MTrecbank OLineitem OOrders OSigmod
800
700
= 600+
E 500+
g 400
2 3004
2004
100+
0_

Regular XML
gl Datasets

Fig. 5: Results for test cases (a) T1 and (b) T2

PathINLAB over PathStack on original TreeBank dataset
(84AMB). We also tested the performance of PathINLAB
and PathStack on a larger dataset, Protein (700MB) in test
case T4 based on the set of queries shown m Table 3.

RESULTS AND DISCUSSION

Figure 5a shows that INLAB encoding outperforms
in terms of reducing the XML file size. XML data is
usually much smaller, about 15-65% than the original
XML file. For a larger XML file size (as shown by Protein
dataset) by using INLAB enceding, there 1s a major
reduction in file size, about 65%. Hence, it is very suitable
especially in reducing the size for a large-scale dataset.

Figure 5b shows the execution time of queries defined
in Table 2 for PathINLAB, PathStack, XSQ and
conventional top-down approaches. As can be observed,
conventional top-down approach i1s much slower
compared to PathINLAB, PathStack and XSQ (generally
over an order magnitude). This is because conventional
top-down approach i3 too conservative when
backtracking and reads several tumes unnecessary nodes
in the XML document when comparing for matches.
Likewise, PathINLAB performs better as compared to
PathStack if the path query is of P-C relationship. This is
mainly due to its labeling scheme format, which enable
quick determination of query nodes in P-C relationship.
However, when comes to A-D relationship, PathINLAB 1s
slower than PathStack as shown m Q3 Fig. 5b. This 1s
because the extra time needed for multiple lookups on the
index table until the ancestor level is reached. This test
result indicates that PathINT.AB is the fastest, followed by
PathStack, XSQ and conventional top-down approach.
Thus, for the rest of the test cases, we benchmarked
PathINLAB with respect to PathStack only.

Figure 6a and b show the execution time of queries
over original Treebank and Protein datasets, respectively.
Treebank dataset 1s a deeply nested skew structured tree
with many repeating elements while protein i1s a flat

(b) EConventional MPathStack O0XSQ OPathINLAB
100+

& @ e
= &8 oS
L L L
|
|

Execution time (sec)

[
[
1

ol
]
[
I
I
I

Q1 Q2 Q3 4 Q5
Path query

2741

J. Applied Sci., 7 (19): 2736-2743, 2007

80(s) DPathINLAB
o] PstiSisck

60
50
40
30-
20
10
0

Q1 Q2 Q3 A Qs

Execution time (sec)

Fig. 6: Results for test cases (a) T3 and (b) T4

structured tree with many fan-outs. From the result
obtained, PathINLAB performs about 10% much better
than PathStack on the flat structure, which is the most
common structure in most data exchange scenario. On the
skew structure dataset, PathINLAB performs about 5%
better as compared to PathStack.

CONCLUSIONS

In this study, we have proposed a hybrid query
processing architecture, INLAB comprising both mdexing
and labeling technologies. Using the INLAB labeling
scheme, structural relationships can be determined easily.
The extensive experimental results showed that INLAB
labeling scheme 1s efficient and yet smmple. We
complemented INLAB with mndexing technologies to
speed up the matching process among each binary
structural relationship. Experimental results showed that
PathINLAB outperforms the conventional top-down
approach, XSQ and PathStack in most cases. Besides,
PathINLAB process queries efficiently on a flat structured
tree (many fan-outs), which is the most common structure
found in most data exchange scenario. Moreover,
PathINLAB 1s capable of supporting large-scale of dataset
efficiently. This 1s crucial as currently there is a paradigm
shift towards large-scale of data exchange and transfer
across the Internet.

REFERENCES

AlKhalifa, S., HV. Tagadish, N. Koudas, .M. Patel,
D. Srivastava and Y. Wu, 2002. Structural joins: A
primitive for efficient XML query pattern matching.
Proc. ICDE, pp: 141-152.

Bruno, N., D. Srivastava and N. Koudas, 2002. Holistic
twig joms: Optimal XML pattern matching. Proc.
ACM SIGMOD, pp: 310-321.

601 (b) OPathINLAB
H PathStack
50
E 40
E 304
8 20
A
104
04 T T T T
Q1 Q2 9.c) Q4 Qs
Path query

Chen, Q., A. Lim, K. Ong and J. Tang, 2003. D(k)-index:
An adaptive structural summary for graph-structured
data. Proc. SIGMOD, pp: 134-144.

Chen, Y., S. Padmanabhan, G.A. Mihaila and
3.B. Davidson, 2004. Efficient path query processing
on encoded XML. Proceeding of International
Workshop on High Performance XML Processing.

Chung, CW., J.K. Min and K. Shim, 2002. APEX: An
adaptive path mdex for XML data. Proc. ACM
SIGMOD, pp: 121-132.

Cohen, E., H. Kaplan, T. Milo, 2002. Labeling dynamic
XML trees. Proc. ACM SIGMOD-SIGACT-SIGART,
pp: 272-281.

Cooper, BF., N. Sample, M.J. Franklin, G.R. Hjaltason and
M. Shadmon, 2001. A fast index for semistructured
data. In Proc. of VLDB, pp: 341-350.

Dietz, P.F., 1982, Mamtaining order ina linked list. Proc.
ACM Symp. On Theory of Computings, pp: 122-127.

Goldman, R. and J. Widom, 1997. Data Guides: Enabling
Query Formulation and Optimization in
Semistructured Databases. Proc. VLDB, pp: 436-445.

Green, T.J., G. Miklau, M. Onizuka and D. Suciu, 2003.
Processing XML streams with determimstic automata.
Proc. ICDT, pp: 173-189.

Haw, S.C. and G.5.V.R K. Rao, 2005. Query optimization
techniques for XML databases. Int. J. Inform.
Technol., 2: 97-104.

Haw, 5.C. and G.3.V.R.X. Rao, 2007. An efficient path
query processing support for parent-child
relationship in native XML databases. I. Digital
Inform. Manage., 2: 82-87.

He, H. and . Yang, 2004. Multiresolution indexing of XMI
for frequent queries. Proc. ICDE, pp: 683-694.

Kaushik, R., D. Shenoy, P. Bohannon and E. Gudes, 2002.
Exploiting local similarity to efficiently ondex paths in
graph-structured data. In Proc. of ICDE, pp: 129-140.

Kim, I, S.H. Lee and H-J. Kim, 2004. Efficient structural
joins with clusters extents. Inform. Proc. Lett.,
91: 69-75.

2742

J. Applied Sci., 7 (19): 2736-2743, 2007

Kimber, W.E., 1993. HyTime and SGMIL.: Understanding
the HyTime HYQ Query Language. Available:
http://ftp2.de.freebsd.org/pub/sgml/ifi.uio.no/
HyTime/Hy(Q-1.1 Kimber.

Kiss, A. and V.I.. Anh, 2005. Combining tree structure
indexes with structural indexes in query evaluation
on XML data. Lecture Notes Comput. Sci,
3631: 254-267.

Li, Q. and B. Moon, 2001. Indexing and querying XMI.
data for regular path expressions. Proc. VLDB
Conference, pp: 361-370.

Lian, W., N. Mamoulist, David W.L. Cheung and
S.M. Yiu, 2005, Indexing useful structural patterns for
XML query processing. TEEE Trans. Knowledge Data
Eng., 17: 997-1009.

Lu, J. and T.'W. Lmg, 2004. Labeling and querying
dynamic XML, trees. Lecture Notes Comput. Sci.,
3007: 180-189.

Lu,J., T. Chenand T.W. Ling, 2004. Efficient processing
of XML twig patterns with parent child edges: A
look-ahead approach. Proc. CTKM, pp: 533-542.

Milo, T. and D. Suciy, 1999. Index structures for path
expression. Proc. ICDT, pp: 277-295.

ONeil, P, E. O'Neil, S. Pal, I. Cser, G. Schaller and
N. Westbury, 2004. ORDPATHS: Tnsert-friendly XML
node labels. Proc. ACM SIGMOD, pp: 903-908.

Peng, F. and S.3. Chawathe, 2003. XPath queries on
streaming data. Proc. ACM SIGMOD, pp: 431-442.

Sigmod, 2002, Sigmod Database, ACM. Available
http:/Awww.sigmod. org/record/xml.

Tatarinov, 1., S. Viglas, K.S. Beyer, J. Shanmugasundaram,
EJ. Shekita and C. Zhang, 2002. Storing and querying
ordered XML using a relational database system.
Proc. ACM SIGMOD, pp: 204-215.

Thoenangi, R., 2006. A concise labeling scheme for XMI.
data. Tn Proc. of ACM SIGMOD, COMAD (In Press).

UW, 2002, University of Washington XMI. Repository.
http://www.cs.washington.edu/research/
xmnldatasets/.

Wu, Y., I.M. Patel and H.V. Jagadish, 2003. Structural join
order selection for XML query optimization. Proc.
ICDE, pp: 443-454.

Wu, X, ML. Lee and W. Hsu, 2004. A Prime Number
Labeling Scheme for Dynamic Ordered XML Tree. In:
Proc. of ICDE, pp: 66-78.

Yan, L. and Z. Liang, 2005. Multiple Schema Based XML
Indexing. Lecture Notes Comput. Sci., 3619: 891-900.

Yao, I.T. and M. Zhang, 2004. A fast tree pattern
matching algorithm for XML query. Proc.
IEEE/WIC/ACM, pp: 235-241.

Zhang, C., I. Naughton, D. DeWitty, Q. Luo and
(. Lohman, 2001. On supporting containment queries
in relational database management systems. Proc.
ACM SIGMOD, pp: 425-436.

Zhang, W. D. Liu and T Li, 2004, An encoding
scheme for ndexmg XML data. In: Proceeding of
[EEE Intemnatinal Conference On e-Technology,
e-Commernce and e-Service, pp: 525-528.

Zou, Q. 8. Liu and W. Wesley Chu, 2004, Ctree: A
compact tree for indexing XMI. data. Proc. WIDM,
pp: 39-46.

2743

	JAS.pdf
	Page 1

