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Transient Stability Assessment of a Power System Using PNN and LS-SVM Methods
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Abstract: This study presents transient stability assessment of electrical power system using two artificial
neural network techniques which are Probabilistic Neural Network (PNN) and Least Squares Support Vector
Machine (LS-SVM). Transient stability of a power systemn 1s first determined based on the generator relative
rotor angles obtained from time domain simulation outputs. Simulations were carried out on the TEEE 9-bus test
system considering three phase faults on the system. The data collected from the time domain simulations are
then used as mputs to the PNN and LS-SVM. Both networks are used as a classifier to determme whether the
power system 18 stable or unstable. To verify the effectiveness of the proposed PNN and LS-SVM methods,
they are compared with the Multi Layer Perceptron Neural Network (MLPNN). Results show that the PNN gives
faster and more accurate transient stability assessment compared to the LS-SVM network and MLPNN 1n terms
of classification results.
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INTRODUCTION

Recent blackouts mn the USA, some European and
Asian countries have illustrated the importance and need
of more frequent and thorough power system stability
study. Nowadays, power systems have evolved through
contimung growth in intercomnection, use of new
technologies and controls. Due to increased operations
which may cause power system to be in highly stressed
conditions, the need for dynamic security assessment of
power systems is arising. Transient Stability Assessment
(TSA) 13 part of dynamic security assessment of power
systems which involves the evaluation of the ability of a
power system to remain in equilibrium under severe but
credible contingencies. These evaluations aim to assess
the dynamic behavior of a power system m a fast and
accurate way. Methods normally employed to assess TSA
are by using time domain simulation, direct and artificial
mtelligence methods. Tune domain simulation method 1s
implemented by solving the state space differential
equations of power networks and then determines
transient stability. Direct methods such as the transient
energy method determine transient stability without
solving differential state space equations of power
systems. These two methods are considered most
accurate but are time consuming and need heavy
computational effort. Presently, the use of Artificial Neural
Network (ANN) in TSA has gained a lot of interest
among researchers due to its ability to do parallel data
processing, high accuracy and fast response.

In transient stability assessment, the Critical Clearing
Time (CCT) is a very important parameter in order to
maintain the stability of power systems. The CCT 1is the
maximum time duration that a fault may occur in power
systems without failure in the system so as to recover to
a steady state operation. Earlier ANN works carried out in
TSA used the feed forward Multi Layer Perceptron (MLP)
with back propagation learning algorithm to determine the
CCT of power systems (Pothisarn and Jinwibhakorn, 2003,
Sanyal, 2004). Bettiol et al. (2003) proposed the use of
radial basis function networks to estimate the CCT.
Another method to assess power system transient
stability using ANN is by means of classifying the system
into either stable or unstable states for several
contingencies applied to the system (Krishna and Padiyar,
2000, Sanyal, 2004). ANN method based on fuzzy
ARTMAP architecture has also been used for TSA of a
power system (Silveira ef af., 2003). Boudour and Hellal
(2005) proposed the use of combined supervised and
unsupervised leaming for evaluating dynamic security of
a power system based on the concept of stability margin.
Sawhney and Jeyasurya (2004) used ANN to map the
operating condition of a power system based on a
transient stability index which provides a measure of
stability in power systems. Support Vector Machine
(SVM) is another ANN method used for TSA
(Moulin et al., 2004, Wang et al., 2005) m which the
method has several advantages such as automatic
determination of the number of hidden neurons, fast
convergence rate and good generalization capability.
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In this study, two new ANN methods are proposed
and developed for transient stability assessment of power
systems using PNN and Least Squares Support Vector
Machine (LS-SVM). Both ANN methods are considered
new applications in transient stability assessment of
power systems. The procedures of transient stability
assessment using PNN and LS-SVM are described and
the performance of the PNN and LS-SVM 1s compared
with the MLLPNN so as to verify the effectiveness of these
two methods. Both the MLP and PNN networks were
developed using the MATLAB Newral Network Toolbox,
whereas the L3-3VM was developed using the L3-SVM
Matlab Toclbox (Suykens ef al., 2002).

MATHEMATICAL MODEL OF
MULTIMACHINE POWER SYSTEM

The differential equations to be solved in power
system stability analysis using the time domain sunulation
method are the nonlinear ordinary equations with known
initial values. Using the classical model of machines, the
dynamic behavior of an #-generator power system can be
described by the following equations:

2
mM3% _p (1
1 dtz i el
However,
8 =0, (2)

By substituting (2) in (1), Eq. 1 becomes
M16‘)i = Prm -Pm (3)

Where:

8, = Rotor angle of machine 1,

w; = Rotor speed of machine 1,

P = Mechanical power of machine i,
P. = Electrical power of machine i,
M, = Moment of nertia of machine 1.

Equation 3 is then solved by using a time domain
simulation program through step-by-step integration so
as to produce time response of all state variables.

BACKGROUND ANN THEORY

Here the exolanation of two ANN methods, namely
the PNN and the LS-SVM are given. Both the ANN
methods are used as classifiers to determine the stability
of a power system.

Fig. 1: PNN Architecture

Radial basis
function

Fig. 2: PNN pattern layer

Probabilistic Neural Network: PNN which 15 a class of
Radial Basis Function (RBF) network is useful for
automatic pattermn recogmition, nonlinear mappmg and
estimation of probabilities of class membership and
likelihood ratios (Specht, 1992). Tt is a direct continuation
of the work on Bayes classifiers (Burrascano, 1991) in
which it 13 interpreted as a function that approximates the
probability density of the underlying example distribution.
The PNN consists of nodes with four layers namely input,
pattern, summation and output layers as shown in Fig. 1.
The input layer consists of merely distribution units that
give similar values to the entire pattern layer.

For this work, RBF 1s used as the activation function
1n the pattern layer of the PNN.

The |dist] box shown in Fig. 2 subtracts the input
weights, TW, ,, from the input vector, p and sums the
squares of the differences to find the Euclidean distance.
The differences indicate how close the mput 15 to the
vectors of the traimng set. These elements are multiplied
element by element, with the bias, b, using the dot
product (.*) function and sent to the radial basis transfer
function. The output a is given as:
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a = radbas( H W, —p H b) (4

Where, radbas is the radial basis activation function
which can be written mn general form as:

radbas(n) = e &)

The tramming algorithm used for traming the RBF 18
the orthogonal least squares method which provides a
systematic approach to the selection of RBF centers
(Chen et al., 1991).

The summation layer shown in Fig. 1 simply sums the
mputs from the pattern layer which correspond to the
category from which the training patterns are selected as
either class 1 or class 2. Finally, the output layer of the
PNN is a binary neuron that produces the classification
decision. As for this work, the classification 1s either class
1 for stable cases or class 2 for unstable cases.

Least Squares Support Vector Machine (LS-SVM):
LS-SVM 1s a reformulation of the standard SVM (Suykens
and Vandewalle, 1999). The reformulation leads to solving
a set of linear equations which 1s easier to solve than
SVM quadratic equations. The reformulation does not
result in SVM losing any of its advantage. L.S-SVM map
mput vectors to a higher dimensional space where a
maximal separating hyperplane 15 constructed. Its
mathematical formulations are described in this section.

Given the training data set, {x,, vi} "\, where, x, R
represent k-th mput pattern and y,€ R 13 the k-th output
pattern, the L.3-SVM aims at constructing a classifier of
the form,

y{(x) = sign {i o, Y WL X, ) + b} (6)

k=1

Where, o, are positive real constant and b 1s a real
constant.
2
P(xx,) = exp LX?XK”
20k, 202

is the RBF kernel which is considered in this study.
The least squares version to the SVM classifier is
done by formulating the classification problem as:

N
. 1 T 1w
min Jw,be)=—w w+y— > € Q)
min J(w,b.€) = ngk

subject to equality constraints,

yk[WTq)(Xk)-#b}:l—ek,k:l ....... N (8)

Where, ¢(x,) is a nonlinear function which maps the
input space into a higher dimensional space.

By using the Mercer’s Theorem, this function is
related to P(x,x,) as follows,

Px) g, )= i x,) %)
Equation 7 and 8 lead to Karush-Kuhn-Tucker

systems and can be written as the solution to the
following set of linear equations,

HRARITRES
YZZ"+9 T ||« |1

Where:

Z = [(P(Xl)T Yiseeos (p(XN)TYN]:

Y = [yioyls

1 = [L;.:00,

e = [e;..ieyl

o = [a;.. 0

Mercer’s Theorem can be applied again to the matrix
), = 777 where,

Qy = ¥ Rex) elx) (1)
= VYW X))

Hence, the solution to the classifier as given n Eq. 6
can be found by solving the linear set of Eq. 10 and 11
instead of using quadratic programming for solving the
equation as is the case with SVM. The LS-SVM network
developed m this work uses the LS-SVM Matlab Toolbox
(Suykens et al., 2002) in which the training of LS-SVM 15
based on the iterative solver conjugate gradient algorithm.

Performance evaluation of PNN and LS-SVM networks:
Performance of the developed PNN and LS-SVM networks
can be gauged by calculating the error of the actual and
desired test data. Firstly, error is defined as:

Error, En:|Dcsired output, DO_-Actual output, AOH\ (12

Where:
n = The test data number.

The desired output 1s the known output data or target
data used for comparing with the neural network output.
Meanwhile, the actual output (AQ) is the output obtained
from the trained neural network.
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From Eq. 12, the mean error can be calculated using,

N
Percentage Mean Error{ME) = Z%x 100 (13)

n=1

Where:
N = The total number of test data.

The percentage classification error is given by,

Percentage classification error =

(14)

No. of misclassification ot test data "
N

100

MATERIALS AND METHODS

In the PNN and LS-SVN methods used for transient
stability assessment, the TEEE 9-bus test system is used
for verification of the methods. Before the PNN and LS-
SVM  implementation, time domain simulations
considering several contingencies were carried out for the
purpose of gathering the training data sets. Simulations
were done by using the MATLAB-based PSAT software
(Milano, 2005). Time domain simulation method is chosen
to assess the transient stability of a power system
because it is the most accurate method compared to the
direct method. Tn PSAT, power flow is used to initialize
the states variable before commencing time domain
simulation. The differential equations to be solved in
transient stability analysis are nonlinear ordinary
equations with known mitial values. To solve these
equations, the techniques available in PSAT are the Euler
and trapezoidal rule techniques. In this work, the
trapezoidal technique 1s used considering the fact that it
15 widely used for solving electro-mechanical differential
algebraic equations (Milano, 2007).

The type of contingency considered 1s the three-phase
balanced faults created at various locations in the system
at any one time. When a three-phase fault occur at any
line in the system, a breaker will operate and the
respective line will be disconnected at the Fault Clearing
Time (FCT) which is set by a user. The FCT is set
randomly by considering whether the system 1s stable or
unstable after a fault is ¢leared. According to (Anderson
and Fouad 2003), if the relative rotor angles with respect
to the slack generator remain stable after a fault 1s cleared,
it implies that FCT < CCT and the power system is said to
be stable but if the relative angles go out of step after a
fault 1s cleared, 1t means that FCT > CCT and the system
is unstable.

Transient stability simulation on the test system:
Figure 3 shows the TEEE 9-bus system in which the data
used for this work is obtained from Anderson and Fouad

® O - 0 @

2 3
18Ky 18/230 () 230/13.8 13.8kv
< 230kv 230kv | 5
Load Al 0) Load B

© Tl O

16.3 kv @

Fig. 3: TEEE 9 bus System

(2003). The system consists of three Type-2 synchronous
generators with AVR Type-1, six transmission lines, three
transformers and three loads.

Figure 4 shows examples of the time domain simulation
results illustrating stable and unstable cases. A three
phase fault is said to occur at time t = 1 second at bus 7.
In Fig. 4a the FCT 1s set at 1.08 sec while m Fig. 4b the
FCT is set at 1.25 sec. The relative rotor angles of the
generators oscillate and the system 1s said to be stable
(Fig. 4) whereas the relative rotor angles of the generators
go out of step after a fault is cleared and the system
becomes unstable (Fig. 4b). Tt can be deduced from Fig. 4
that the FCT setting 1s an important factor to determine
the stability of power systems. If FCT is set at a shorter
time than the CCT of the line, the system 1s stable;
otherwise the system will be unstable.

Data preprocessing: The simulation on the system for a
fault at each line nms for 5 sec at a time step At, set at
0.001 sec. The fault is set to occur at one second from the
beginning of the simulation. Data for each contingency 1s
recorded in which one steady state data is taken before a
fault occurs and 20 sampled data are taken for one second
duration after a fault occurs. There are 25 contingencies
simulated on the system and this gives a size of 25%21 or
525 data collected.

The collected data are further analyzed and trimmed
down to 468 due to repetitions of data. The one steady
state data taken before all faults occur are reduced to one
since the values will be the same for all faults. Next, the
repetitions are due to faults that occur on the same line.
The FCT of the same line are set at four different times,
two for stable cases and two for unstable cases. At the
start of a fault, same values of data are recorded for all the
four faults. A few milliseconds after a fault, the recorded
data differ from each other due to different FCT settings.
Due to repetitions of data recorded, one data out of the
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Fig. 4: Relative rotor angle curves of generators for (a)
stable and (b) unstable cases

Table 1: Input features selected

Name of input features No. of features
Relative rotor angles (&) 2
Generator speed (1) 3
Py and Qg 6
Py, and Qp, 12
P and Qurane 6
Total No. of features 29

four different FCT settings are kept These data are
denoted as data for stable cases. The data collected are
normalized so that they have zero mean and unity
variance.

There are 468 sets of data collected from simulations
in which a quarter of the data which is 117 are randomly
selected for testing and the remaining 351 data are
selected for traming the neural network.

Tnput features selection: The selection of input features
is an important factor to be considered in the ANN
umnplementation. The mput features selected for this study

are relative rotor angles (8, ), motor speed (w,), generated
real and reactive powers (P, Q,,), real and reactive
power flows on transmission line (Py,. Q. and the
transformer powers (P, Quus)- Overall there are 29 mput
features to the ANN (Table 1). The breakdown of the
input features selected for the neural networlk.

TEST RESULTS

Here, the results obtained from the PNN and LS-SVM
for transient stability assessment are presented. Initially,
the PNN results using 29 mput features are given and
discussed. Then, results obtained from LS-SVM using the
same input features as PNN are presented and discussed.
For the purpose of evaluating the effectiveness of the
PNN and LS-SVM, the results of the mult layer
perceptron neural network (MLPNN) are also presented.
Finally, comparisons are made between the PNN, LS-SVM
and MLPNN results for transient stability assessment.

PNN results for transient stability assessment: The PNN
developed in this study is used for classifying power
system transient stability states m which the PNN
classifies 1 for stable cases and 2 for unstable cases. The
architecture of the PNN is such that it has 29 input
neurons, the hidden layer neurons equal the number of
traiming data which 18 351 and with a single output
neuron. The PNN testing results using the 29 mnput
features. The shaded cells in the table denote the
misclassification of test data (Table 2). From the Table 2
1t can be deduced that the false alarm rate 13 0.86% and the
false dismissal rate 1s 0.86%. False dismissal rate 1s the
rate of unstable cases assigned to the stable cases and
the false alarm rate 1s the rate of stable cases assigned
to the wunstable cases. Thus, the total error of
misclassification (false alarm rate + false dismissal rate)
and the mean error are both 1.71%.

LS-SVM results for transient stability assessment: The
developed L.S-SVM is also used for classifying power
system transient stability states in which it classifies 1 for
stable cases and 2 for unstable cases similar to that of
PNN. The architecture of L.S-SVM is such that it has 29
input neurons, 351 hidden neurons which is the same as
the number of training data and a single output neuron.
The trained 351 ludden neurons are used to classify the
117 test data. Table 3 shows the LS-SVM testing results
in which the shaded cells m the table denote the
misclassification of test data. From the table, it can be
deduced that the false alarm rate 18 1.71% and the false
dismissal rate 18 1.71. Thus, the percentage error of
misclassification and the mean error are both 3.42%.
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Table 2: PNN testing results

Test data Desired output PN output Test data Desired output PNN output Test data Desired output PNN output.
1 1 1 40 1 1 79 1 1
2 1 1 41 1 1 80 2 1
3 1 1 42 2 2 81 2 2
4 1 1 43 2 2 82 2 2
5 1 1 44 2 2 83 2 2
6 2 2 45 2 2 84 1 1
7 2 2 46 1 1 85 1 1
8 2 2 47 1 1 86 1 1
9 2 2 48 1 1 87 1 1
10 1 1 49 1 1 88 1 1
11 1 1 50 1 1 89 2 2
12 1 1 51 2 2 90 2 2
13 1 1 52 2 2 91 2 2
14 1 1 53 2 2 92 2 2
15 2 2 54 2 2 93 2 2
16 2 2 55 1 1 94 1 1
17 2 2 56 1 1 95 1 1
18 2 2 57 1 1 96 1 1
19 1 1 58 1 1 97 1 1
20 1 1 59 1 1 98 1 1
21 1 1 60 2 2 99 1 1
22 1 1 61 2 2 100 1 1
23 1 1 62 2 2 101 1 1
24 2 2 63 2 2 102 1 1
25 2 2 64 2 2 103 1 1
26 2 2 65 1 1 104 2 2
27 2 2 66 1 1 105 2 2
28 1 2 67 1 1 106 2 2
29 1 1 68 1 1 107 2 2
30 1 1 69 1 1 108 1 1
31 1 1 70 2 2 109 1 1
32 1 1 71 2 2 110 1 1
33 2 2 72 2 2 111 1 1
34 2 2 73 2 2 112 1 1
35 2 2 74 2 2 113 2 2
36 2 2 75 1 1 114 2 2
37 1 1 76 1 1 115 2 2
38 1 1 77 1 1 116 2 2
39 1 1 78 1 1 117 2 2

MLPNN results for transient stability assessment: The
architecture of the MLPNN is such that it has 29 input
neurons representing the 29 input features, one hidden
layer with 13 newrons using the hyperbolic tangent
transfer function and a single output neuron. The mean
squared error is used as a goal for training the neural
network which 1s set at 0.03. The training algorithm
used for this network is the resilient back propagation
algorithm (Riedmiller and Braun, 1993). The performance
goal was met at 41,050 epochs with a training time of
25 min 32 sec.

From the Table 4 the calculated mean error 1s 6%. As
shown in Table 4, some of the MLPNN outputs are not
crisp 0 or 1 but in the range 0 to 1, where 0 indicates the
system is stable and 1 when the system is stable. So for
classification purpose, a decision rule is used such that if
the MLPNN output 15 in the range of 0.9 to 1.1 (+10%), it
will indicate that the system is stable (class 1) whereas if
the MLPNN output is 1 the range of -0.1 to 0.1 (+10%), it

means that the system 1s unstable (class 2). For MLPNN
output outside this range of values, it is considered as
misclassified. The column indicated by C in the table
the classification of the converted MLPNN
outputs so that they can be easily compared with the
desired outputs to determine the accuracy of the MLPNN.
Classes 1 and 2 are used in column C instead of 1 and 0

shows

for stable and unstable classification so that the results
conformed to the results obtained from PNN and LS-SVM.
By using this decision rule the number of misclassified
data is 13 out of 117 test data, which 1s 11.1%. The shaded
cells in the table are the respective misclassified data
which are denoted as x in the column C.

Comparison of neural network results in transient
stability assessment: It can be concluded that
the performance of PNN 1s better compared with LS-SVM
and MLPNN mn transient stability assessment of the 9 bus
power system (Table 5).
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Table 3: 1LS-SWVM testing results

Test data Desired output  LS-SVM output  Test data Desired output  L8-SVM output Test data Desired output L3-SVM output

1 1 1 40 1 1 79 1 1

2 1 1 41 1 1 80 2 2

3 1 1 42 2 2 81 2 2

4 1 1 43 2 2 82 2 2

5 1 1 44 2 2 83 2 2

6 2 2 45 2 2 84 1 1

7 2 2 46 1 1 85 1 1

8 2 2 47 1 1 86 1 1

9 2 2 48 1 1 87 1 1

10 1 1 49 1 1 88 1 1

11 1 1 50 1 1 89 2 2

12 1 1 51 2 2 90 2 2

13 1 1 52 2 2 91 2 2

14 1 1 53 2 2 92 2 2

15 2 2 54 2 2 93 2 2

16 2 2 55 1 1 94 1 1

17 2 2 56 1 1 95 1 2

18 2 2 57 1 1 96 1 1

19 1 1 58 1 1 97 1 1

20 1 1 59 1 1 98 1 1

21 1 1 60 2 1 99 1 1

22 1 1 6l 2 2 100 1 1

23 1 1 62 2 1 101 1 1

24 2 2 63 2 2 102 1 1

25 2 2 64 2 2 103 1 1

26 2 2 65 1 1 104 2 2

27 2 2 66 1 1 105 2 2

28 1 2 67 1 1 106 2 2

29 1 1 68 1 1 107 2 2

30 1 1 69 1 1 108 1 1

31 1 1 70 2 2 109 1 1

32 1 1 71 2 2 110 1 1

33 2 2 72 2 2 111 1 1

34 2 2 73 2 2 112 1 1

35 2 2 74 2 2 113 2 2

36 2 2 75 1 1 114 2 2

37 1 1 76 1 1 115 2 2

38 1 1 77 1 1 116 2 2

39 1 1 78 1 1 117 2 2

Table 4: MLLPNN results using 29 input features

Test Desired MLPNN Test. Desired MLPNN Test Desired MLPNN

data output output Error C data output  output Error C data output output Error C
1 1 1.000 0.000 1 40 1 1.000 0.000 1 79 1 0.989 0.011 1
2 1 1.000 0.000 1 41 1 0.999 0.001 1 80 0 0.030 0.030 2
3 1 1.000 0.000 1 42 0 0.006 0.006 2 81 0 0.001 0.001 2
4 1 1.000 0.000 1 43 0 0.000 0.000 2 82 0 0.000 0.000 2
5 1 1.000 0.000 1 44 0 0.000 0.000 2 83 0 -0.002 0.002 2
6 0 0.000 0.000 2 45 0 0.000 0.000 2 84 1 0.946 0.054 1
7 0 0.000 0.000 2 46 1 0.996 0.004 1 85 1 1.000 0.000 1
8 0 0.000 0.000 2 47 1 1.061 0.061 1 86 1 0.999 0.001 1
9 0 0.000 0.000 2 48 1 0.144 0.856 X 87 1 1.002 0.002 1
10 1 0.996 0.004 1 49 1 0.960 0.040 1 88 1 1.003 0.003 1
11 1 0.997 0.003 1 50 1 0.663 0.337 X 89 0 0.004 0.004 2
12 1 1.002 0.002 1 51 0 0.006 0.006 2 90 0 -0.012 0.012 2
13 1 1.002 0.002 1 52 0 0.010 0.010 2 91 0 0.005 0.005 2
14 1 1.095 0.095 1 53 0 -0.002 0.002 2 92 0 -0.020 0.020 2
15 0 0.004 0.004 2 54 0 -0.003 0.003 2 93 0 -0.077 0.077 2
16 0 0.002 0.002 2 55 1 0.999 0.001 1 94 1 0.666 0.334 X
17 0 0.001 0.001 2 56 1 0.997 0.003 1 95 1 0.330 0.670 X
18 0 -0.001 0.001 2 57 1 1.002 0.002 1 96 1 1.873 0.873 X
19 1 1.006 0.006 1 58 1 1.000 0.000 1 97 1 0.618 0.382 X
20 1 1.000 0.000 1 59 1 1.007 0.007 1 98 1 1.032 0.032 1
21 1 1.000 0.000 1 60 0 0.221 0.221 X 99 1 1.000 0.000 1
22 1 1.000 0.000 1 61 0 0.194 0.194 X 100 1 0.998 0.002 1
23 1 0.999 0.001 1 62 0 0.250 0.250 X 101 1 1.000 0.000 1
24 0 -0.033 0.033 2 63 0 -0.010 0.010 2 102 1 1.000 0.000 1
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Table 4: Continued

Test Desired MLPNN Test. Desired MLPNN Test Desired MLPNN

data output output Error C data output __ output Error C data output output Error C
25 0 -0.005 0.005 2 64 0 0.005 0.005 2 103 1 1.000 0.000 1
26 0 0.004 0.004 2 65 1 0.999 0.001 1 104 0 0.022 0.022 2
27 0 -0.001 0.001 2 66 1 0.997 0.003 1 105 0 0.004 0.004 2
28 1 0.257 0.743 X 67 1 1.002 0.002 1 106 0 -0.004 0.004 2
29 1 1.0d6 0.046 1 68 1 1.003 0.003 1 107 0 -0.004 0.004 2
30 1 0.975 0.025 1 69 1 1.000 0.000 1 108 1 0.151 0.849 X
31 1 1.125 0.125 X 70 0 0.272 0.272 X 109 1 1.000 0.000 1
32 1 1.000 0.000 1 71 0 -0.009 0.000 2 110 1 1.000 0.000 1
33 0 -0.033 0.033 2 72 0 -0.001 0.001 2 111 1 1.002 0.002 1
34 0 0.018 0.018 2 73 0 -0.001 0.001 2 112 1 1.000 0.000 1
35 0 -0.006 0.006 2 74 0 -0.001 0.001 2 113 0 0.004 0.004 2
36 0 0.002 0.002 2 75 1 1.000 0.000 1 114 0 0.000 0.000 2
37 1 0.999 0.001 1 76 1 1.001 0.001 1 115 0 0.000 0.000 2
38 1 1.000 0.000 1 7T 1 1.001 0.001 1 116 0 0.000 0.000 2
39 1 1.000 0.000 1 78 1 1.001 0.001 1 117 0 0.000 0.000 2

Table 5: Summary of PNN, LS-SVM and MLPNN results

Network PNN L3-SVM MLPNN
Input features 29 29 29

False alarms (%) 1 (0.86%) 2(¢1.71%0) -

False dismissals (90) 1 (0.86%) 2(¢1.71%0) -

Mean error 0.0171 0.0342 0.0600
Misclassification 2(1.71%) 4 (3.429%) 13(11.1%%)
Training time 1.32 sec 1.7 sec 25 min 32 sec

The mean error for PNN 18 0.017 compared to 0.0342
for L3-SVM network and the percentage classification
errors are also less for PNN (1.71%) compared to 3.42% for
L5-SVM, respectively. For MLPNN, there are no false
alarms and false dismissals but the mean error and
misclassification percentage are higher than both PNN
and LS-SVM which are 0.06 and 11.1% respectively. In
terms of training time, the PNN has the shortest training
time (1.32 sec) compared to the time taken to train the LS-
SVM (1.7 sec) and MLPNN (25 min 32 sec). The difference
in training time for PNN and LS-SVM is insignificant
compared to the time taken to train the MLPNN. In
general, the performance of PNN and L3-SVM are better
compared to MLPNN and that PNN gives the best
performance among the three methods.

CONCLUSION

The use of PNN and 1.S-SVM has been proposed for
transient stability assessment of the 9-bus power system
by means of classifying the system into either stable or
unstable states for several three phase faults applied to
the system. Time domain simulations were first carried out
to generate training data for both neural networks and to
determine transient stability state of a power system by
visualizing the generator relative rotor angles. The PNN
and TLS-SVM networks are then compared with the
MLPNN so as to evaluate its effectiveness in transient
stability assessment. The performances of PNN and

LS-SVM compared to the MLPNN are better in terms of
mean and misclassification errors and training time.
Results also show that among the three methods used
1n this work, the PNN gives the best performance 1n terms
of accuracy in classifying the transient stability states.
Thus, the PNN and LS-SVM networks are promising
methods for transient stability assessment of power
systems.
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