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Abstract: This study presents the development of Artificial Neural Networks (ANNs) and Fuzzy Logic (FL.)
models for prediction of daily reservoir inflow. Furthermore, a Linear Regression (LR) model was also developed
as a traditional method for flood forecasting. To illustrate the applicability and capability of the ANNs and F1.
models, the Dez reservoir, located in the south-west of Tran, was used as a case study. The results demonstrated
that ANNs model can predict the reservoir inflow for 1-day-ahead, especially for training pattern better than
the FL and LR models. It was found that the accuracy of ANNs model predictions decreased for flood
forecasting more than 1-day ahead (e.g., 2, 3, or 4 days ahead), whereas the results obtained from the FL and
LR models showed better correlation with the corresponding measured values in this conditions. One of the
main findings of this research was that the fuzzy logic model generally underestimated the flood even for,
whereas the other two considered models predicted the flood discharge relatively good The peak value of the
hydrograph, which 1s very important from the flood hazard viewpomt, was estimated good by the ANNs and
LR models for the short period (1-day ahead), with the error being 3, 4.5 and 26% for the ANNs, LR and FL.
models, respectively. For the long periods (e.g., 3-days ahead) the flood discharge was predicted by the LR and
FL models slightly better than the ANNs model.
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INTRODUCTION

Flood forecasting is one of the most important tasks
of the reservoirs management systems. The magnitude of
economic losses associated with floods highlights the
mportance of flood management. An efficient flood alarm
system may significantly improve public safety and
mitigate economical damages caused by inundations.
Flood forecasting 1s undoubtedly a challenging field of
operational hydrology and a huge literature has been
developed in years (Xiong et al., 2001; Gopalkumar and
James, 2002; Chau ef af., 2005; Tayfur and Singh, 2006); in
particular, the rainfall-runoff relationship has been
recognized to be nonlinear. Although conceptual models
allow a deep understanding of the hydrological
processes, their calibration requires to collect a great
amount of information regarding the physical properties
of the watershed under study (for example, characteristics
of terrain and river networks, rainfall and runoff), which
may be expensive and very time consuming. Sophisticated
physical models may not be ideal for real-time forecasting
due to the huge data requirement and the associated long

computation time for model calibration. Since flood
warning systems do not aun at providing an explicit
knowledge of the rainfall-runoff process and the main
concern 1s making accurate and timely predictions at
appropriate locations, a simple black-box model 1s then
preferred for identifying a direct mapping between inputs
and outputs (Corani and Guariso, 2004). Furthermore, the
inherently nonlinear relationships between input and
output variables complicate attempts to forecast stream
flow events. There is thus a need for improvement in
forecasting techniques.

In recent years, many nonlinear approaches, such as
the artificial neural networks, fuzzy logic and genetic
algorithm approaches have been used in solving flood
forecasting problems. Over the last decades, Artificial
Neural Networks (ANNs) have been mcreasingly used in
hydrological forecasting (Maier and Dandy, 2000);
furthermore, their computational speed in simulating and
forecasting 1s very welcomed in real time operations.
Dawson and Wilby (1998) discussed the application of
ANNSs to flow forecasting in two flood-prone catchments
in England using howly hydrometric data. Liong et al.
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(2000) achieved to get a high degree of accuracy with
ANNs for river stage forecasting in Bangladesh. Ni and
Xue (2003) established an ANN model based on Radial-
Basis-Function (RBF) for flood risk ranking at five safety
polders in Yangtze River, China. Bhattacharya and
Solomatine (2005) built water level-discharge relationship
models with an ANN and a M5 model tree on the river
Bhagirathi in India. Based on casual meteorological
parameters, Ahmad and Simonovic (2005) applied ANNs
for predicting the peak flow, timing and shape of runoff
hydrograph for the Red River in Manitoba, Canada. Chau
(2006) adopted a particle swarm optimization model to
train an ANN model to predict water levels in Shing Mun
River of Hong Kong with different lead times on the basis
of upstream gauging stations. Tareghian and Kashefipour
(2006) developed an ANN model to forecast daily runoff
for Karoon River in Tran. Dawson et of. (2006) used ANNs
to predict T-year flood events and the index flood for 850
catchments across the UK. Wu and Chau (2006) employed
a genetic algorithm based Artificial Neural Network
(ANN-GA) for flood forecasting in a channel reach of the
Yangtze River in China. Pang et al. (2007) developed a
Noenlinear Perturbation Model (NLPM) based on ANN,
defined as NLPM-ANN, for the purpose of improving the
rainfall-munoff  forecasting  efficiency and accuracy.
Chang et al. (2007) presented a systematic investigation
of the three common types of ANNs for Multi-Step-
Ahead (MSA) flood forecasting for two watersheds in
Taiwan.

Since Zadeh (1965) publication regarding an
extension of the classical fuzzy set theory, the fuzzy
method has been widely used m many fields of
applications, such as pattern recognition, data analysis,
system control, etc. (Kruse ef al., 1994; Klir et al., 1997,
Theodoridis and Koutroumbas, 1999). Hundecha et al.
(2001) demonstrated that a Fuzzy Logic (FL) approach
could be used to simulate actual component hydrologic
processes in areas where sufficient data were available to
model these processes physically. Ozelkan and Duckstein
(2001) proposed a fuzzy conceptual ramnfall-runoff
framework to deal with parameter uncertainties of
conceptual rainfall-runoff models. Cheng et al. (2002)
combined a fuzzy optimal model with a genetic algorithm
to solve multi-objective rainfall-runoff Xinanjiang model
calibration in the Shuangpai reservoir. Luchetta and
Manetti (2003) used a fuzzy clustering approach to
forecast a real time hydrological model in the Padule di
Fucecchio basm in middle-north of Italy. Mahabir et af.
(2003) applied FL, to forecast seasonal runoff for the
Lodge and Middle Creek basins, Canada. Blazkova and
Beven (2004) used FL to estimate flood frequency by
continuous simulation of sub-catchments rainfalls and

discharges for a dam site in a large catchment in the Czech
Republic. Vernieuwe et al. (2005) described the
catchment’s response to rainfall input through fuzzy
relationships for Zwalm River in Belgium. Rao and
Srinivas (2006) tested a fuzzy clustering for regionalization
of watersheds with 245 gauging stations data in Indiana.

The main objective focused in this paper is to model
the daily reservoir discharge inflow (e.g., flood events)
using the Computation Intelligence Tools (i.e., fuzzy logic
and artificial neural networks) with the results obtained
from these sophisticated methods being compared with
the traditional linear regression model and the
corresponding measured values. From where, the suitable
methods for predicting the flood peak for the short
(e.g., 1-day ahead) and long (e.g., 4-days ahead) periods
would be introduced.

Artificial Neural Network (ANN): ANNs have gained
popularity in a large array of engineering applications
where conventional analytical methods show inferior
performance. ANNs have shown a good potential to
efficiently model complex input-output relationships
where the presence of nonlinearity and inconsistent noisy
data adversely affects other approaches (Deka and
Chandramouli, 2005).

ANNSs have an ability to capture a relationship from
given patterns and hence this malkes them suitable for
employment in the solution of large-scale complex
problems, such as pattern recognition, nonlinear
modeling, classification, association and control. In
applications, a three layer-feed forward type of artificial
neural network is commonly considered. Tn a feed forward
ANN, the input quantities (x,) are fed into the input layer
neurons that, in turn, pass them on to the hidden layer
neurons (z) after multiplication by connection weights
(v;) (Fig. 1). A hidden layer neuron adds up the weighted
input received from each input neuron (xv;) and
associates it with a bias (b) (i.e., net, = Yxv; + b)). The
result (net,) is then passed on through a nonlinear transfer
function (activation function) to produce an output i.e.,
sigmoid function; f (net) = [1/ (1+e™™)]. The output
neurons do the same operation as does a hidden neuron.
The back propagation algorithm finds the optimal weights
by minimizing a predetermined error function (E) of the
following form (ASCE Task Committee, 2000):

E=Y>(yt) 1

Where:

Vi = Component of a network output vector
Y; = Component of a target output vector
T.n No. of output neurons

P = No. of tramnmng patterns
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Fig. 1: Schematic representation of ANN architecture

In the back propagation algorithm, the optimal
weights would generate an output vector Y = (¥, Va..., Vo)
as close as possible to the target values of the output
vector T = (t,, ts..., t,) with a pre-selected accuracy. The
back propagation algorithm employs the gradient-descent
method, along with the chain rule of differentiation, to
modify the network weights as (ASCE Task Committee
2000):;

dE

v, =y M s — (2)
avu
Where:
vy = Weight from ith neuron in the previous layer to
the jth neuron in the current layer
& = Learming rate

The network learns by adjusting the biases and
weights that link its neurons.

Before training begins, a network’s weights and
biases are set equal to small random values. Also, due to
the nature of the sigmoid function used in the back
propagation algorithm, all extemal mput and output
values before passing them into a newral network are
normalized. Without standardization and normalization,
large values input into an ANN would require extremely
small weighting factors to be applied and this could cause
a number of problems (Dawson and Wilby, 1998).

Artificial neural network contamns three distinctive
modes: Training, cross validation and testing. Tn the
training mode, the training datasets consisting of input-
output patterns are presented to the network. The weights
are found through an iterative process, i which the back
propagation learning algorithm is used to find the weights
such that the difference between the given outputs and
the outputs computed by the network is sufficiently small.

While traiming, it 1s a usual practice that the traimng

|Fuzzyrulebas§

Input

|Fuz.ziﬁcaﬁ0n|

¥
Fuzzy inference
engine

A4

Fig. 2: Schematic representation of fuzzy system

datasets are further subdivided into two sets, traming and
cross validation sets, according to data availability.
During the training patterns, Mean Square Error (MSE) of
training and cross validation datasets are momtored
together to find the optimal termination pomt for training.
This check avoids overtraining. After training, the
network 1s tested with the testing dataset to determine
how accurately the network can simulate the input-output
relationship.

Fuzzy Logic (FL): A general fuzzy system has basically
four components, fuzzification, fuzzy rule base, fuzzy
output engine and defuzzification (Fig. 2). Fuzzification
converts each plece of mput data to degrees of
membership by a look-up in one or more several
membership functions. The key 1dea m fuzzy logic, in fact,
1s the allowance of partial belongings of any object to
different subsets of the universal set instead of belonging
to a single set completely.

Partial belonging to a set can be numerically
described by a membership function, which takes on
values between 0 and 1 inclusive. This intuitive approach
1s used rather commonly because it 13 simple and derived
from the innate intelligence and understanding of human
beings. Fuzzy membership functions may take on many
forms, lhke triangular, trapezoidal, Gaussian and
generalized bell membership functions.

The fuzzy rule base contains rules that mclude all
possible fuzzy relations between inputs and outputs.
These rules are expressed m the IF-THEN format. In the
fuzzy approach, there are no mathematical equations and
model parameters. All the uncertamties, nonlinear
relationships, or model complications are included in the
descriptive fuzzy mference procedure i the form of
TF-THEN statements. There are basically two types of rule
systems, namely, Mamdani and Sugeno (Jantzen, 1999).
Depending upon a problem under consideration, a user
can choose the appropriate rule system. According to the
Sugeno rule system, the consequent part of the fuzzy rule
15 expressed as a mathematical function of the mput
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variable and such a system is more appropriate for neuro-
fuzzy systems (Ser, 1998; Jantzen, 1999). In the Mamdam
rule system, however, the consequent part of the fuzzy
rule is also expressed as verbally.

The fuzzy inference engine takes into account all the
fuzzy rules in the fuzzy rule base and learns how to
transform a set of inputs to the corresponding outputs.
To do so, 1t uses either min or prod activation operators.
The activation of a rule 15 the deduction of the
conclusion, possibly reduced by its firing strength. The
prod activation (multiplication) scales the membership
curves, thus preserving the mitial shape, rather than
clipping them as the min activation does.

Tantzen (1999) pointed out that both methods, in
general, work well. Tn order to have a good understanding
of the methodology, let consider a simple case presented
m Fig. 3, where there are two input variables X and Y
(Fig. 3a, b) and one output variable 7 (Fig. 3¢). For this
simple system the following fuzzy rules are assumed:

IFXi1slow and Y 15 low then z 18 lugh; if X 15 lugh and
Y 1s high then 7 is low

As can be seen from Fig. 3a, X = 20 is a part of low
and high subsets with the different degrees of
membership to be 0.8 and 0.2, respectively. Similarly,
Y =301 a part of low and high subsets with 0.4 and
0.6 degrees of membership, respectively (Fig. 3b). The
fuzzy inference engine will consider the previous rules
and by min activation find the fuzzy output set of high
from the first rule with 0.4 firing strength (thus value would
be 0.32 by prod activation) and output set of low from the
second rule with 0.2 firing strength (this value would be
0.12 by prod activation) (Fig. 3c). It should be noted that
mference produces not a crisp output value but assigns
whole fuzzy output subsets to the output variable

(a).ll
Low High
0.8
o2 _ / k
0 20 X
vy Low High

0.6 /\
0.4 // /
0

L J

30 Y
@l Low High
04
0.2
0 z

Fig. 3. Schematic representation of fuzzy inferencing: (a)
X =20, (b)Y =30 and (c) fuzzy output sets for Z

(Fig. 3c). The next sub-process in inference is the
composition sub-process where all of the fuzzy subsets
assigned to the output vanable are combined together to
form a single subset for the output variable. For this
purpose, there are basically two composition methods
including: Maximization (max) and summation (sum). In
max composition, the combined output fuzzy subset is
constructed by taking the pointwise maximum over all of
the fuzzy subsets assigned to the output variable by the
inference rule. In sum composition, the combined output
fuzzy subset 1s constructed by taking the pomntwise sum
over all of the fuzzy subsets. Consequently, in sum
composition it is sometimes possible to obtain truth
values greater than one. Note that the sum composition
must be followed by the Center of Gravity (COG)
defuzzification method (Jantzen, 1999). Figure 4a and b
present combined fuzzy output subsets derived by the
max and sum compositions for the previous example,
respectively.

Defuzafication 1s a process by which a solution set
is converted into a single crisp value. The fuzzy logic
solution set is in the form of a function, relating the value
of the result to the degree of membership. The entire
range of possible solutions may be contamed in the fuzzy
solution set. Defuzzification is also a process to extract an
easily comprehensible answer from the set. The Center Of
Gravity (COG), Bisector Of Area (BOA), the smallest,
median and largest maxima methods are some of
commonly used defuzzification methods.

Study area: Data used in this study were taken from the
Dez watershed, southwest of Iran. This watershed covers
about 21720 km®, which lies between longitudes 48710 and
50°21 east and latitudes 31°34 and 34°7 north. At the end
of the mountainous part of this watershed the Dez dam is
located as one of the main reservoir dams m Iran (Fig. 5).

@
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Fig. 4: Schematic representation of (a) max composition
and BOA defuzzification and (b) sum composition
and COG defuzzification
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Fig. 5: Dez dam and watershed and selected stations

The main variable parameters affecting the discharge
entering to a reservoir dam from a watershed and suitable
to use for the statistical models are usually discharges
from the tributaries of river, precipitation and evaporation.
Precipitation and evaporation data collected from the
synoptic stations and discharge data from the
hydrometric stations located at the upstream of dam were
used to forecast the Dez dam reservoir inflow. For input
parameters, four rain gauges, two evaporation gauges and
eight discharge gauging stations were selected from a lot
of stations, which are distributed in the Dez watershed.
The Talezang gauging station data was intended as the
output data and the Dez dam reservoir inflow indication
(Fig. 5). The original data consists of 6 years (1993-1999),
which 1363 input-output pairs were intended for training
set and 313 and 314 dataset were used for validation and
test set, respectively.

Evaluation criteria for model performance: The
performance of the predictions resulting from training,
validation and testing is evaluated by the following
measures for goodness-of-fit: RMSE (root mean square
error) and CC (coefficient of correlation):

i[(Qm )i —(Q,);] (3)

RMSE = {{-=
n

S1Q,); — @QIQ,@,)]
CC=— (4)

> 1(Qu) - @TIQ,), @)

Q,=aqQ, (5)

Where, subscripts m and p = measured and predicted
discharge, respectively; n = total number of data pairs
considered; Q_m and Q_p = mean value of the measured
and predicted data, respectively, a = a coefficient which
relates the predicted and measured values and for better
model performance this coefficient should be close to
unity. RMSE furnishes a quantitative indication of the
model error in units of the variable, with the characteristic
that larger errors receive greater attention than smaller
ones. The qualitative evaluation of the model performance
is made in terms of the coefficient of correlation between
the measured and simulated data.

Another important criterion of the model performance
for flood forecasting is to predict the peak flood as
accurate as possible. These evaluation criteria were
applied to compare the considered models.

Models development and evaluation: The developed ANN
and FL models were calibrated and tested for prediction of
1 to 4-days ahead reservoir inflow. Traditionally, linear
black box models of ARMAX are frequently used in time
series modeling. In discrete time, these models have a
form where the model’s response at time t depends
linearly on the data points at preceding time (t-1, t-2, etc.).
In this study, the following model similar in concept to
time series model structure is assumed and applied for
flood forecasting based on past daily rainfall, evaporation
and stream flow data. The following equation is assumed
as the main and general function for the dam discharge
inflow:
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Qra(t+1) = (E, (). E,(1),R,(1),.... (6)
R4 (t): Ql(t)r": Qs(t))

where, Qp, (t+1) 13 the discharge m Talezang station
(immediate station at the upstream of Dez dam) at time t+i,
which i is 1,2,3,4; R(t) is daily rainfall at the synoptic
stations 1 to 4 at tume t. E(t) 13 daily evaporation at the
synoptic stations 1 and 2 at time t;, Q(t) 1s stream flow data
at the hydrometric stations 1 to 8 at time t.

RESULTS AND DISCUSSION

FL model calibration and validation: In order to apply
fuzzy logic to predict reservoir inflow, a sensitivity
analysis was performed for the fuzzy logic operator AND
and for the methods of mnplication, aggregation and
defuzzification. The results of changing a single operator
or method while the rest of the model was held constant
were compared with the results from the baseline model.
Based on this sensitivity analysis, the AND operator
product and the implication method minimum were found
to perform better. The model was found to be relatively
less semsitive to the method of aggregation, m that
operators, maximum and summation demonstrated the
same result. The model results were most sensitive to the
method of defuzzification. The largest of maxima method
produced better results than the centroid, bisector and the
median of maxima methods. Based on this, a prototype
model configuration was developed: using product for the
AND operator; minimum for the implication method,
maximum for the aggregation method and the largest of
maxima method for the defuzzification method.
Furthermore, 3, 4, 6 and 9 linguistic terms were applied for
each input, which fuzzy logic model with 4 linguistic
terms, low, median, ligh and very high, showed the best
sequel. The mput-output variables were then fuzzified
using different types of fuzzy membership functions. The
triangular, trapezoidal, a simple Gaussian, two-sided
Gaussian, generalized bell, Sigmoidal, pi curves
membership functions were applied in this study and a
simple Gaussian membership function showed the best
results which can be expressed as:

s (7
fix,c,c)=e

¢ and o parameters must be determined during the
calibration peried. In order to define the fuzzy rules, the
two well-known fuzzy inference systems, Mamdam and
Takagi-Sugeno were also used. The constructed FI, model
predicted the reservoir inflow at 1 day ahead with 93.2 and
65.2% correlations with the measured data using Mamdam

and Takagi-Sugeno fuzzy inferences, respectively, which
shows the superiority of Mamdani over the Talkagi-
Sugeno fuzzy mnference. As it can be seen in Table 1,
fuzzy logic models can predict the reservoir mflow at 1 to
4-day-ahead with more than 87% correlations for
validation period. According to Eq. 5 the FI. model
generally underestimated the flood discharges.

ANN model training and testing: For training of the ANN
by the generalized data rule, dataset comprising 1363
mputs and the comresponding desired output were
constructed. Two separate datasets including 313 and 314
datasets were used for model validating and testing. The
ASCE Task Committee (2000) reported that ANNs are not
very capable at extrapolation. Thus, in the present study,
care was taken to have the traming data include the
highest as well as the lowest values, i.e., the two extreme
input patterns.

The Alyuda Neurointeligence software was deployed
and 1deal network architecture was found through a
number of trial and errors. In order to train the networl,
Quick Back propagation, Conjugate gradient descent,
Quasi-Newton,  lmited memory  Quasi-Newtorn,
Levenberg-Marquardt, batch propagation, Incremental
Back propagation were applied and the Quick Back
propagation demonstrated the best results. Training
pattern was completed with a 0.7 learming rate and 15000
iterations. Furthermore, three activation functions-linear,
sigmoid and hyperbolic tangent were used and the
sigmoid activation function, which can be expressed as
the following equation revealed the best results:

_1
fix)= /(1 v (8)

As it can be seen in Table 2, training of the ANN
model was successfully accomplished with eg., a
CC=0.97 and RMSE = 2.45 m’ sec”' for prediction of 1-

Table 1: FI. model results for 1 to 4-day-ahead reservoir inflow

Calibration Validation
a
Time (Egq. 5) cC RMSE ole] RMSE
T+1 0.731 0.932 2.92 0.930 5.93
T+2 0.725 0.879 5.75 0.873 6.56
T+3 0.761 0.841 582 0.888 5.52
T+4 0.751 0.812 5.88 0.871 6.54

Table 2: ANN model results for 1 to 4-day-ahead reservoir inflow
Train Validation Test

a
Time (Eq.5 C€C RMSE  CC RMSE CC  RMSE
TH 0,958 0970 245 0.930 485 0939 413
TH2 0902 095 325 0.863 696 0851 627
TH 099 0881  3.65 0.848 672 0873 551
T+ 1010 0.883  3.65 0.825 633 0743 931
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Table 3: LR model results for 1 to 4-day-ahead reservoir inflow

Calibration Validation
a
Time (Eq.5 cCC RMSE  CC RMSE
T+1 0.982 0.902 3.65 0.897 4.73
T+2 0.972 0.777 6.25 0.872 6.05
T+3 1.010 0.711 5.20 0.873 5.59
T+4 1.040 0.628 7.82 0.824 4.94

day-ahead reservoir inflow. Table 2 also shows that for
the long period prediction (e.g., 3 and 4-days ahead) the
accuracy of the model was slightly declined. The values
of a coefficient in Table 2 show that the relationship line
between the predicted and measured values has almost
coincided with the line of (Y = X).

Linear regression model calibrating and validating:
Because the basic characteristics of the Dez watershed
have remained unaltered in years, there exists a certain
correlation between the upstream and downstream
conditions. A linear regression model is the simplest and
well-developed representation of a casual, time-1nvariant
relationship between an input and output function. Hence
a linear regression model was developed as the
benchmark for models comparison in flood forecasting.
As 1t can be mmplied from Table 3 in calibration peried,
linear regression performed poorly but the result accuracy
of validation period is fairly good (e.g., for 1-day-ahead
reservoir inflow forecasts, CC = 0.897 and RMSE = 4.73).

Table 1-3 shows that the ANN and regression models
generally predict the reservoir mflow for 1-4 day-ahead
satisfactorily. Another consequence acquired from this
study was that for all 1 to 4-day-ahead forecasts, the ANN
model was generally superior in the reservoir inflow (the
a values were close to umty, Table 2) in comparison with
the FL model (Table 1). The FL model generally
underestimates the reservoir inflow. According to the
RMSE evaluate function, for the longer period of time
forecasting (e.g., 3 and 4-day ahead) the FL. model showed
the better results in comparison with the corresponding
results obtained from the ANN model, in particular for the
validating and testing patterns (Table 1, 2). Therefore, for
the short period of flood forecasting it seems that the
ANN model performed better than the F1. model. However,
the important point is that if the models would able to
predict the peak discharge as accurate as possible. To
evaluate how powerful models are m predicting the peak
discharge, two observed floods during 4/13/199 to
4/29/1996 and 4/4/1998 to 4/18/1998 were shown in Fig. &
and 7 for short and long periods of time prediction
respectively. As it can be seen 1n these figures, ANN and
LR models could estimate and predict the flood
hydrograph with a fairly good accuracy for 1 and 3-day-
ahead. The calculated errors were 3 and 4.5% for 1-day-
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Fig 6:Predicted and measured flood hydrograph for
1-day-ahead forecasts
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Fig 7:Predicted and measured flood hydrograph for
3-day-ahead forecasts

ahead discharge prediction for ANN and regression
models, respectively. The underestimation stream flow
prediction of FL. model can be also seen in Fig. 6 with the
error being about 26%. The error in peak discharge
estimation by the regression model was about 0.2% for
3-days-ahead flood predictions. Whereas, the
corresponding values for ANN and FL models were 9.3
and 6.0%, respectively. These results show that the FL.
model was able to predict the peak discharge only for the
long period of time flood predictions.

CONCLUSIONS

The main geal of this study was to evaluate the
application of fuzzy logic and artificial neural network
models for prediction of reservoir inflow in order to
control and manage occwrring floods. The application
results  demonstrated that ANNs can predict the
reservoir mnflow for 1-day-ahead, especially in training
period (CC = 0.970, RMSE = 2.45) better than FL
(CC = 0932, RMSE = 2.92) and LR (CC = 0.902,
RMSE = 3.65) models. As the prediction time go ahead, FL
model showed the better results and ANN model results
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slightly declined. Another result acquired from this study
was that for all 1 to 4-day-ahead forecasts, ANN model
generally estimated the flow relatively well, while FL
model underestimated the reservoir inflow. According to
the errors calculated for peak discharge predictions, it can
be finally concluded that the ANN and regression models
are more suitable than the FL. model for the short term of
time flood predictions, e.g., 1-day ahead. The FL model
performed slightly better than the ANN model for the long
term, e.g., 4-days ahead, flood discharge predictions.
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