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Abstract: We applied four methods of linear regression; the least squares, Huber M, least absolute deviations
and nonparametric to several distributional assumptions. The same sets of simulated data were used and MSE,
MAD and biases of these methods were compared. The least absolute deviations, Huber M and nonparametric
regression shown to be more appropriate alternatives to the least squares in heavy tailed distributions while
the nonparametric and LAD regression were better choices for skewed data. However, no best method could
be suggested 1n all situations and using more than one method of exploratory data analysis 1s recommended

in practice.
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INTRODUCTION

Modelling data by the means of linear least squares
method 18 very important and crucial. Frequently,
however, the well-known least squares regression
procedure 1s only optimal under certain distributional
assumption of errors. In practice, this assumption may not
hold because of possibility of the skewness or presence
of outliers m data. In theory, when the assumption of
normality does not meet, the standard least squares
estimation for the regression coefficients B will be biased
and/or non-efficient, see for example (Hampel et al., 1986).

When the assumption of normality is not met in a
linear regression problem, several alternative methods of
the standard Least Squares (LS) regression have been
proposed (Draper and Smith, 1998; Kutner ef al., 2004,
Ortiz et al., 2006). Among these, three methods are in
widespread application in many branches of applied
science. Theses methods are robust M-estimation,
(Huber, 1964), T.east Absolute Deviations (LAD) method,
(Dielman and Pfaffenberger, 1982) and (Bloomfield and
Steiger, 1983) and nonparametric (rank based) methods,
(Adichie, 1967; Jureckova, 1971; JTaeckel, 1972).

There are many statistical tests as well as visual
procedures to assess potential deviances from standard
assumption of an ordinary least squares regression model.
Among these (Cook and Weisberg, 1999, Weisberg, 2005;
Chatterjee and Hadi, 2006; Montgomery et al., 2007)
described standard procedures for such assessments.

In spite of these diagnosis procedures and
availability of alternative methods to ordinary least
squares, there are few recommendations regarding the
conditions in which each method has better efficacy, but
all of these are based only on personal experiences and so
a formal comparison of these methods is not available.
The aim of this research is a formal comparison of these
methods through a simulation study.

Here, we report some summary results of a numerical
study undertaken to compare the properties of three
alternatives to standard least squares method for simple
and multiple linear regression analysis. ITn our simulation
study, we generate independent data sets which contain
outlier by using heavy tail distribution (compare to
standard normal distribution) such as Laplce, logistic and
mixtures of normal and Laplace distribution and skewed
independent data sets from gamma distribution family
with different shape parameter and compare the
performance of all four candidate regression methods with
generated data from standard normal distribution.
Comparison was done using MSE (mean squared errors),
MAD (mean absolute deviations) and bias criteria.

BACKGROUND INFORMATION
Consider the following regression linear model
Y=Xp+e (1)

Where, Y is an (n x1) vector of observations with the
design matrix X of order nxpsuch that X, =1,i=1..,n.
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We consider P as a (px1) vector parameter and e as an
(n*1) vector of independent, 1dentically distributed errors
with some distribution function F, which is generally
considered as unknown; we only assume that F belongs
to some family of distribution functions. The problem 1s
that of estimating the parameter .

Standard linear model estimation assumes e to be
multivariate normally distributed with mean zero and
variance-covariance matrix ¢° L.

There are various methods
regression coefficients in the above linear regression
model. The most commonly used is the method of least
squares; it has the best performance if the errors have a
normal probability distribution. We can obtain the least
squares estimator by minimizing the sum of squares:

for estimation of

> Y, XY’ 2)

in the model 1.1 with respect to B, where x’, is the ith
row of X. If X is of full rank, then the least squares
estimator is:

Bus = (XX XY (3)

The next popular method of estimation 1s the method
of least absolute deviations (LAD) estimation. Similar to
the least squares estimator, a LAD estimator of vector 3
1s obtained by minimizing the expression:

Y, - xp )

n
Z1=1

with respect to p.

The I, fit function in the MASS library from S-Plus
software (Venables and Ripley, 2002) can be used to find
parameter estimations. This function uses the Barrodale-
Roberts algorithm (Barredale and Roberts, 1973, 1974;
Bloomfield and Steiger, 1983) and 1s a specialized linear
programming algorithm.

In the circumstances that the distribution of F 1s not
normal or cannot be approximately assumed normal, we
should look for alternative estimation procedures, less
sensitive to deviations from normality assumption. We
obtain an M-estimator M, by minimizing:

S (Y, - xB) (5)

with respect to P, where p is an appropriate function,
usually convex. If @p(x) = dp(x)/dx 1s continuous, then M,
1s one of the roots of the system of equations:

> x (Y, - xB)=0 (6)

More specifically, the well-known Huber M-estimator,
which employs the following ¢ function could be used:

X
(p(X)—{

c.signx

if ‘X‘SC

if ‘x‘ =c

For parameter estimation, the rlm function again from
the MASS library in S-Plus can be used. This function
uses iteratively weighted least squares method for
solving Eq. 6 and 1s fully described in (Huber, 1981,
Hampel et al., 1986; Marazzi, 1993).

The nonparametric estimate of regression coefficients
is obtained by minimizing:

37, lrank(Y, - xB) - 1Y, - XP) 9

This also can be done iteratively, starting with the
vector of the least squares estimates and finding the
vectors that give the smaller values in Eq. 7. Then, the
nonparametric estimate { is obtained as the median of

the differences:
Y, — (leu + Blez +..+ Bpxlp)

Estimation of regression coefficients by minimizing
(7) was proposed by Jaeckel (1972). In fact, Taeckel's
estimations are essentially the same as those of (Birks and
Dodge, 1993). The RRegress function in Minitab software
can be used for parameters estimation in the case of
nonparametric rank based regression

DESIGN OF SIMULATION EXPERTMENTS

In this section, we will describe the design of our
study. Sample size (n), number of independent variables
(p), estimation method and distribution of errors are the
study variables. We will consider p=1, 2 and 3 and n
equal to 10, 20, 30, 50, 100, 250 and 500. For each n and p,
we generate an nx(p+1) matrix with the first column of 1's
and the next columns are taken from the wumiform
distribution on [-10, 10]. For sunple linear regression
(p =1), we consider B = (5,-3)', for multivariate regression
(p=2), avalue of p = (5,-3,1)" was chosen and for (p = 3),
we set = (5,-1,3,1)".

The notation and parameters of distributions family,
which used in the simulation process, are introduced in
Table 1. The errors were simulated from the following
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Table 1: Distribution family for simulating errors

Family of Notation and

distribution  pararmeters pdf ()

Normal X ~ N(u, o9 LR AR
Y210

Logistic x - LOG(3, ) 0<0 leXP[(X——ﬂ)/@]z
6 {1+ exp[{x — )/ 6]}

Laplace x ~ LA, m) 0<8 L sl
20

Gamma X ~ GAMI(B, ©) 0<8, 0<k L e 0w x

0T (x)

densities: N(0, 1), LOG(0,1), LA(0,1), GAM(1, 0.1), GAM
(1,0.5), GAM(1, 1), GAMI(]1, 2). In addition, we considered
three mixtures of Normal and Laplace distribution as
follows: 0.95 N(0, 1)+ 0.05 LA{0, 1), 0.90N(0, 1)+ 0.10
LA(0,1)and 0.85N{0, 1)+ 0.15LA0, 1).

In each case, 1000 replications were sinulated and
regression coefficient of LS, MAD, Huber M-estimate and
nonparametric method were calculated. For comparing the
properties of the estimation procedures, we focused on
the Mean Squared FErrors (MSE), Mean Absolute
Deviations (MAD) and bias of the estimated coefficients.
The following three criteria are used:

1 1000 2 ]
_ 1 _pveE _ (8)
MSE = 2 B-BYB P
1 1000 ~
b N )]
MAD = —— > 2B B
. P ZjETUBU
BlaS‘ZHmooB]‘ v

Where, p 1s the number of independent variables.
SIMULATION RESULTS

Overall results of the methods under study and
corresponding MSE, MAD and bias of 1000 simulation
for each estimation method are presented in Fig. 2-21.
These figures illustrate the results of MSE, MAD and
bias for the case of p = 1 parameter. Graphs for p = 2 and
3 parameters regressions were similar to those of p =1
parameter regression and so were not shown m this
study.

We wrote an 3-Plus function for calculating MSE,
MAD and bias criteria for LS, Huber M and LAD
methods. Parameters in LS method were estimated by lm
function in S-Plus software. Parameters m Huber M

method were estimated by rlm function and in LAD

---------- Least absolut deviations

———— ‘Nenparametrics

Fig. 1: Legend for the graphs in the result section
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Fig. 2:Results of MSE (black lines) and MAD (grey lines)
for 1000 simulations from N(0, 1) distribution
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Fig. 3: Results of bias for 1000 simulations from N(0, 1)
distribution

method by 11fit function, all are available in MASS
library from S-Plus software (Venables and Ripley, 2002).
The MSE, MAD and bias criteria for nonparametric
method were calculated by a function in R wrote by
authors.

Depending on different choices of p (number of
parameters), n (sample size) and type of distribution,
runming time of simulation varied between 2 to 130 min.
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Fig. 4: Results of MSE (black lines) and MAD (grey lines)
for 1000 simulations from LOG (0, 1) distribution
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Fig. 5: Results of bias for 1000 simulations from LOG(0, 1)
distribution
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Fig. 6:Results of MSE (black lines) and MAD (grey
lines) for 1000 simulations from LA (0, 1)
distribution
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Fig. 7:Results of bias for 1000 simulations from LA(0, 1)
distribution
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Fig. 8 Results of MSE (black lines) and MAD (grey lines)
for 1000 simulations from 0.95 N0, 1) + 0.05
LA(0, 1) distribution
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Fig. 9: Results of bias for 1000 simulations from
0.95N(0, 1)+ 0.05 LA(0, 1) distribution
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Fig. 10: Results of MSE (black lines) and MAD (grey
lines) for 1000 simulations from 0.90 N (0, 1) +
0.10LA(O, 1) distribution

0.12+
0104 ...

0.03

2 0.061
0.041

0.021

0.00 T T T T T T — 1

Fig. 11: Results of bias for 1000 simulations from
0.90N(0, 1)+ 0.10 LA(O, 1) distribution
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Fig. 12: Results of MSE (black lines) and MAD (grey
lines) for 1000 simulations from 0.85N (0 1)+ 0.15
LA(0, 1) distribution
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Fig. 13: Results of bias for 1000 simulations from
0.85N(0, 13+ 0.15LA (0, 1) distribution
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Fig. 14: Results of MSE (black lines) and MAD (grey
lines) for 1000 simulations from GAM (1, 0.1)
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Fig. 15: Results of bias for 1000 simulations from GAM
(1, 0.1) distribution
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16: Results of MSE (black lines) and MAD (grey
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17: Results of bias for 1000 simulations from GAM
(1, 0.5) distribution
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The general simulation results could be summarized
as follows:

As expected, for the studied normal distributions,
the MSE and MAD of LS were the smallest, followed
by the MSE and MAD of Huber M, Nonparametric and
LAD methods, respectively. In addition, in this case, the
bias of LS was the smallest followed by the values of
biases of Huber M, LAD and nonparametric methods,
respectively. However, for the studied logistic
distributions, the MSE and MAD of Huber M was the
smallest. This followed closely by the MSE and MAD
values of LS method.

The MSE and MAD of nonparametric, for this
situation were much greater which followed by the MSE
and MAD of LAD method. Furthermore, although biases
of Huber M, LAD and LS were significantly smaller than
the bias of nonparametric, but their patterns as shown in
Fig. 6 and 8 were mtermingle and so no methods had a
preferable bias in this situation. In the cases of Laplace
distributions, the MSE and LAD values of LAD, Huber M
and nonparametric, were much close to each other but
these values for the .S method was significantly larger.
As mdicated in Fig. 7, the bias of nonparametric in case of
LA (0, 1) showed a smaller pattern as compared to the
other methods but the general pattern of the bias values
for all methods were intermingle so that no preferred
method could be chosen based on bias criterion. For the
studied mixture family, the LS and Huber M are close to
and perform better than LAD and
nonparametric, with respect to MSE and MAD criteria. In
this situation, nonparametric bias was sigmficantly smaller
than the bias of other three methods. Although Huber M,
1.5 and LAD performed similarly with regard to the bias

each other

criterion, but still as shown in Fig. 9, 11 and 13, the bias of
Huber M was shghtly lower. In gamma family, for all three
criteria, the nonparametric and LAD were close to each
other, but inferior to the Huber M. The LS method as also
indicated mn Fig. 14-21 performed much worst in these
situations. We have done a similar set of simulation for
p = 2 and p = 3 parameter regression cases, the results
were generally similar for these cases with the following
exceptions. For the simulated logistic distributions in the
case of p = 2 parameter, the least squares method are
better than the nonparametric and LAD methods. For the
mixture family n p = 2 and 3 parameter cases, the biases
had no regular pattern. Finally, for the studied Laplace
distribution with p = 2 and 3 parameter cases, the Huber
M method performs better than T.AD with respect to all
three criteria.

CONCLUSIONS

A parametric estimation method 15 one based on the
assumption that the random errors in the data have a
particular type of distribution. Robust M-estimation 1s an
altemative to the parametric estimation when the errors
have a distribution that 15 not necessarily normal but
close to normal. One optimal property of the LAD
estimates of the regression coefficients is, by their
definition, that they are the estimates that give the
smallest sum of absolute residuals. In addition, if we
assume that the population of errors has a Laplace (or
double exponential) distribution, then the LAD estimate
15 the maximum likelihood estimate (Birks and Dodge,
1993). The strength of LAD estimation 1s in its robustness
with respect to the distribution of response variable. A
nonparametric procedure performs reasonably well for
almost any possible distribution of the errors. Many such
procedures, including the one described here, are based
on the idea of using the ranks of the data instead of the
actual data values.

In this research performance of four popular
regression methods important classes of
distributions namely symmetric and skewed were
investigated. Our choices for symmetric distribution were
so that ther kurtoses were more than that of standard
normal distribution (1.e., heavy tails distributions). This
gave us the opportunity to investigate our regression
methods with presence of outliers. Present results
indicated that when outliers exist, other alternatives of
the LS are more appropriate (Fig. 2- 21). Choosing a
more efficient alternative to the .S method is closely
related to the type of data and so 1t 1s advisable to use
several alternative methods in data analysis. In cases of
skewed distributions, the performance of .S was inferior
as compared to other methods. Based on our simulated
distributions in this research, the nonparametric and LAD

for two

methods were more suitable for the studied Gamma family.

In almost all symmetric distributions mvestigated
here, the MSE and MAD are close for the sample sizes
larger than 100 and so none of the estimation methods
were superior in such circumstances. However, this has
not been true for the cases of the studies skewed
distributions where the .8 method shown to be far inferior
from the other methods of estimation. In general, the bias
criterion, as compared with the other criteria, shown to
have more fluctuation and this fluctuation persist even for
large sample size. This instability of biases created some
difficulty and confusion in finding the optimum estimation
in some situation.
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In this research, four well-known methods of linear
regression were studied. However, in order to mvestigate
for possibilities of more sutable methods further studies
are needed.
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