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Abstract: The mnsertion of data network in the feedback adaptive control loops makes the analysis and design
of Networked Control Systems (NCS) more complex than traditional control systems. This study addresses the
adaptive stabilization problem of linear time-imnvariant networked control systems. The case of state feedback

1s treated in which only an upper bound on the norm of matrix A is needed. The problem is to find an upper

bound on the transmission period h that guarantees the stability of the overall adaptive networked control

system under an ideal transmission process, le., no transmission delay or packet dropout. Rigorous

mathematical proofs are established, that relies heavily on Lyapunov's stability criterion. Simulation results are

given to illustrate the efficacy of our design approach.
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INTRODUCTION

In recent years, the discipline of networled control
systems has become a lughly active research field. An
NCS is a control system in which a data network is
The use of networks as
media to interconnect the different components in an
industrial control system is rapidly increasing. For

used as feedback media.

example in large scale plants and in geographically
distributed systems, where the number and/or location of
different subsystems to control make the use of single
wires to interconnect the control system prohibitively
expensive (Montestruque and Antsaklis, 2004). The
primary advantages of an NCS are reduced system wiring,
ease of system diagnosis and maintenance and increase
system agility (Zhang, 2001).

The insertion of the data network in the feedback
control loop makes the analysis and design of an NCS
more and more complex, especially for adaptive systems
in which systems parameters not completely known.
1deal

assumptions, such as synchronized control and non-

Conventional control theories with many
delayed sensing and actuation, must be reevaluated
before they can be applied to NCSs. Specifically; the
following 1ssues need to be addressed. The first issue 1s
the network mduced delay (sensor-to-controller delay and
controller-to-actuator delay) that occurs while exchanging
data among devices comnected to the shared medium.

This delay, either constant (up to jitter) or time varying,

can degrade the performance of control systems designed
without considering the delay and can even destabilize
the system. Next, the networl can be viewed as a web of
umreliable transmission paths. Some packets not only
suffer transmission delay but, even worse, can be lost
during transmission (Zhang et al., 2001).

challenge to be addressed when
considering a networked control system 1s the stability
of the overall NCSs. The stability analysis of NCSs
1s treated mn Ye (2000) and Walsh er al. (1999), with
completely known systems. The case of model-based
NCS 15 studied mn  (Montestruque and Antsaklis,
2004) when the controllerfactuator is updated with the
sensor mformation at nonconstant time intervals but
with completely known system parameters. A collection
of results to determine the closed-loop stability of
NCSs in the presence of network sampling, delays
and packet dropouts are covered in Hespanha et al. (2007)
and Baillieul and Antsaklis (2007) and references
therein, but also for completely known systems. Many of
the results presented rely on Lyapunov based techniques
and only provide sufficient conditions forstability of the
NCS. All these results deal with completely known
systems.

In thus study, we treat the stability analysis of
networked control adaptive systems. Under an ideal
transmission process, i.e., no transmission delay or packet
dropout, we have derived a sufficient condition on the
transmission peried that guarantees the NCS will be
stable.

The main
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Fig. 1: The block diagram of NCS
FORMULATION OF THE PROBLEM

Consider an NCS shown m Fig. 1, m which sensor is
clock-driven and both controller and actuator are event
driven.

In Fig. 1, a class of linear time-invariant plants is
described as:

X(t) = Ax(t)+ bu(t,), t e [t t,+1), k=012, .. (1)

where, x(t)eR" 1s a state vector, u(t,)eR 1s a control mput
vector, (A, b) is controllable, A is a constant matrix with
unknown elements, b is a known constant vector.

We assume that the control is updated at the instant
t, and kept constant until next control update is received
at time t,.,. Let h be the transmission period between
successive transmissions, that is, h = t,, - t. For this
study, we assume that the transmission process 1s 1deal,
there are no delays, no data loss (packet loss) during the
transmission. In future work, we will relax these
assumptions.

Present objective 1s to design an adaptive stabilizer
for the networked system and to find an upper bound on
the time transmission period (sampling period) h such that
the NCS is still stable.

The control input. is of the form:

u(® =k (Ox () (2

where, k(1) 1s an n-dimensional control parameter vector,
T denotes transpose. From Eq. 1 and 2, we get:

x{t) = Ax(t)+ bk (t, m=(t,)
= Ax(t)— bk x(t) + bk"(t,)x(t,)

3)

Where, A=A tbk* is Hwwitz matrix satisfying that
A'P+PA =-0Q. P and Q are symmetric and positive-
definite matrices and k* is the true value of k(t). Define
G(t) = k(t)-k* as the control parameter error vector and
e(t) = x(t) - x(t,) as the transmission error, Eq. 3 can be
rewritten as:

(1) = Ax(t) + bo" (t,)x(t,) — bk e(t) (4
RESULTS

To prove the stability of the NCS, firstly, we will find
an upper bound on the transmission error e(t), a lower and
an upper bound on the state x(t) and finally, we will use
these bounds in Lyapunov function to find a bound on
the transmission period h to guarantee stability of the
overall NCS.

Lemma 1: (Transmission Error Upper Bound) The
transmission error e(t) i1s bounded between two
successive transmissions by:

et < vlect] (5)

A+ kuT(tk)H
AUPP

bound on A such that; | Al <A,

where, y = (b= 0% 1y A, 1s an upper

ueR®

Proof: From the defimtion of e(t), fort & (t, t.,), it can be
found that:

8(t) = X(0)—X(t, ) = Ax() + bk (t, )x(t,)
= Ae(t)+ Ax(t, )+ bk (1, )x(t,)

Taking the mtegral on both sides and taking mto
account that e(t,) = 0, we have:

e(t) =e(t, )+ jAe(s) +AX(t,) + KT (1, )x(t, )ds

=[Ax(t, )+ bk (t, (0Nt -t )+ jAe(s)ds

be
Therefore,

Ject)] < ety o + [b™ e ecesfice - )
+ fllaflefas

If we know an upper bound of A that is; ||A||<A,, and

upp

applying Bellman-Gronwall Lemma (Zhang, 2001), yields:

lect)] < j[Aupp + kuT(tk)H]”X(tk)”exp UAuppdwjds
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Then

[le(t)] < ]t

Lemma 2: The state of the NCS, x(t), between successive
transmissions 1s bounded by:

(=) et <[l < Tyl x| (6)

Proof: As e(t) = x(t)-x(t,), then
[ect] - Jec] = [xcof < ]« [xt)]
Using Eq. 5, it can be concluded that

(=) et <[l < Tyl x|

The mam result of this study will be treated m the
following theorem.

Theorem: Let an NCS with linear time-mvariant plant
(1), an adaptive stabilizer with control mput (2) is
globally stable if the adaptive control law takes the form
(Tao, 2003):

o) = —oux(t, )x" (t,)Pb (7

and the transmission period satisfies h<min {h,, h, h.},
where, ¢ is an n*n symmetric positive-definite adaptation
gain matrix and

v

1
h=—Infl+—® |
o [“Aumbkmﬂ

A A
h, = b ]11{1 + Bl QA J, where
A PP C

Uy

= 6|\p\|(Aupp + kuT(tk)H)(H R Q)+ [A] + A,

ol Pilof Ixct )l + ok o))

P f B..
(1*5)* (1*5) (1[3)}\“pp

h, = Lln 1+{
A+ kuT(tk)H

3

upp

Proof: Consider a positive-definite Lyapunov function
V(t) of the form:

V() = XT(Px(E) + T (t)a 9it) (&)

Differentiating V(t) with respect to t, we have

Vit = £ (OPx(t) + x" (OPR(t) ©)
+ 9T (Do '9(t) + 0" (D)o '§(t)

Substituting for x(t)and$(t) from Eq. 4 and 7, there
results:

V(1) = xT(HAPX (1) + x T (1, )d(t, b Px(t)
—eT(1 BTPx(t)+ xT (1IPAX(L)
+ XT(t)Pbd)T(tk Ix(ty) (10)
—x" (1)Pbk *T e(t)
—bTPx{t, x (1, )h(t)
— TRt X" (t, )Pb

Rearranging Eq. 10, yields:

V(t) = —xT(HQx(t) + 2x7 (HPbo (t, )x(t,)
— 2x" ()Pbk *" e(t)
—2x7(t, )Pbo” (x(t, ) (11
+ 2xT(EPbYT (1)x(t, )
— 25T ()P T(t)x(t, )

V(t) becomes bounded from above as:

V() €~y (Qx (0
+ 2[P|oe™ o) Jecty e,

(12)
+ 2| o< lxcefecof
+ 2|k (e, )~ bk T (0] e,
From Eq. 5 and 6, then:
V(1) <~y QD)
2y T
sl Olketlxe o
+ 2y [Plok et et
+2|[P| bkt ) - b ()| [t [t
Using (6) and rearranging,
. 1 s
Vit) < T (] [t ) 1) R (Q)
+ 2y]P| bk (1) b+ | (14)

+2y(1-7)|[P[bk 7|
+ 201 )P bk ct,) - bk (1))
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By choosing v < 1, we have h <h,, where:

R O S (15)
YA, Aupp+kuT(tk)H

From Eq. 7, it can be found that:
[b" )~ bk )] < ol ect, P

Then V(t) becomes:

1 2
A ROl (A= (@

Vit) <
+2lPl{ o o]« JA] + A} 16
= 24- Pl JA] + A,

s2v- el Jo ol et )
Again, by choosing

P (Q)
Y= ¢

and 0<P<1, we have h < h,, where:

oo B8]
A g

2
upp

Substituting for v in (16), we get
. P (Q) ez 2B 18
Vi TEt Hx(t)n[ R R vj =it (18)

Finally, by choosing

P

By o By s
Y- - P

we have h < h,, where:

P P
(1*5)* (1*5) OB)JA“FP

(19)
Ay, + kuT(tk)H

1 {
h,=—In| 1+
A

upp

and we can conclude that V(t)< 0, if h satisfies
h<minfh, h,, hy} defined in Eq. 15, 17 and 19,

respectively. Therefore, x(t), ¢(t) and V(t)are bounded
for all t>t; and the over all system is globally stable.

SIMULATION RESULTS

Now, we demonstrate the applicability of our
approach through the following example. Consider the
plant parameters

Let

Lo el i

Assume A is unknown but only A, is known (take
Ay = 3).

Figure 2 shows the simulation results for the
networked control system with x(0)=[1 17", & = T (identity
matrix), = 0.9, k(0) = [0 0]7, it is found that h, < 0.1865,
h,<0.0082 and h;< 0.024] sec. Before starting simulation
we know that, h< 0.0082, but with simulation proceeds, h
can be found on-line as shown in Fig. 3 (we take h = 0.002
sec). Figure 4 shows the simulation results for the
networked control system with x(0)=[1 1], =1, p=0.9,
k(D) = [117% it is found that h,<0.1367, h,<0.0049 and

1.8+
1.6

14

Fig. 2: NCS states x (t)
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Fig. 3: Transmission period (h)
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Fig. 5: Transmission period (h)

h,<0.0194 sec. Before starting sunulation we know that,
h=<0.0049 (we take h = 0.001 sec), also with simulation
proceeds, h can be found on-line as shown in Fig. 5.

CONCLUSIONS

The study addresses the adaptive stabilization
problem of linear time-invariant networked control
systems. The case of state feedback 1s n which only an
upper bound on the norm of matrix A 18 required. As
shown in theorem 1, the priori knowledge of upper
bound on norm A is not required in constructing the
controller but 1t 1s required only to determine an upper
bound on the transmission period h that guarantees the
stability of the overall adaptive networked control system
under an ideal transmission process, i.e., nNo transmission
delay or packet dropout. In future work we will try to relax
these assumptions. Rigorous mathematical proofs are
established relies heavily on Lyapunov's stability
criterion. Simulation results are given to illustrate the
efficacy of our design approach. It 1s verified that, if the
sampling period of the network 1s less than the upper
bound on h, the control parameters of the adaptive
controller are bounded and that the NCS states converge
to zero as time tends to infinity value as time evolves.
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