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Abstract: A new adaptive quantum lossless compression algorithm 1s introeduced, the suggested algorithm does
not need a priori estimation of probabilities and it is more useful in real applications. The main idea of the

proposed algorithm 1s that the corresponding probabilities of the symbols are assumed to be identical and after
each iteration; all the corresponding probabilities are updated. These probabilities will become closer to the
actual distribution after few iterations. Moreover the complexity of the proposed algorithm can be reduced if

we consider the general properties of the given data
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INTRODUCTION

Quantum computer 1s any device for computation
that makes direct use of distinctively quantum mechanical
phenomena. In a quantum computer, the data is measured
by qubits (quantum bits). There has been much recent
interest in the subject of quantum information processing.
Quantum  information is a natural generalization of
classical mformation. It 18 based on quantum mechanics,
a well-tested scientific theory in real experiments.
Although quantum computation and communication are
still m 1its infancy, experiments have been carried out in
which quantum computational operations were executed
on a very small number of qubits. Research in both
theoretical and practical areas continues at a frantic pace
and many national government and military funding
agencies support quantum computing research to develop
quantum computers for both civilian and national security
purposes (Panthong et «l., 2005). D-Wave Systems
demonstrated on February 13 and 15th 2007 what is
claimed to be the worlds first commercial quantum
computer by using 16 qubits (www.dwavesys.com).

Quantum  information  differs from  classical
mformation m several respects such as the states
teleportation, the states cannot generally be read or
duplicated without disturbance (no cloning theorem), one
state can exist mn superposition of all possible states at
once and there are statistical correlations predicted by
quantum physics for measurements on two entangled
particle systems. The ability to mampulate quantum
information enables us to perform tasks that would
be unachievable in a classical context, such as
unconditionally secure transmission of mformation,
quantum authentication, quantum digital signature
and solving the hard problems in polynomial time
(Al-Daoud, 2007).

Tt may be very advantageous to decrease, where
possible by compression methods, the number of qubits
used for quantum communication and storage. This study
introduces a new compression method without using the
statistical distribution of the given sequence of the qubits
and analogy to the adaptive Huffman code.

CLASSICAL LOSSLESS COMPRESSION

Information theory is generally considered to have
been founded i 1948 by Claude Shamnon in his seminal
worl, A Mathematical Theory of Communication. He
established the two core results of classical information
theory in his landmark. The two central problems that he
solved were: the amount of the compression done on a
message and the necessary rate communicated reliably
a mnoisy chamnel Both problems
redundancy. Shannon mtroduced a new entropy
definition 1n the theory of information, it 1s of the form
(Shannon, 1948):

over COTCETT]

H=-3p logp,

where:
pi = The probability.

Applications of fundamental topics of information
theory include lossless data compression (e.g., ZIP files),
lossy data compression (e.g., MP3s, MPEG and JPEG)
and channel coding (e.g., for DSL lines).

The above entropy definition can be used to
determine the theoretical lossless compression lower
bound or the compression rate. The compression rate 1s
the ratio between the length of an uncompressed string
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and the length of the compressed (binary) string. There
are two types of the universal data compression in
classical domam: the first type 1s two pass compression
algorithms such as Run-length Encoding, Huffman coding
and Arithmetic coding. The second type is one pass
compression algorithms such as Adaptive Huffman
coding, LZ77 and LZ78. Ziv and Lempel present a simple
linear time lossless compression algorithm having an
asymptotic compression rate approaching the sources
entropy, that is allowing a string of length n to be
losslessly compressed to a bit string of length asymptotic
approaching H(p) n for large n. In the first pass, they use
a parsing scheme to encode the source string into unique
prefixes.

QUANTUM LOSSLESS COMPRESSION

Quantum lossless compression is one of the
mnportant directions of the quantum information
processing which starts from the thermodynamic entropy.
Gibbs defined The thermodynamic entropy S after earlier
worlk by Boltzmann as follows:

S=— KBan In p,

Assume that the underlying ensemble 1s 2 = {P, X},
where, X is the set of all symbols X = {|¥ >, |¥>,... P>}
and P is the set of corresponding probabilities, hence the
G1ibbs entropy translates over almost unchanged into the
world of quantum physics to give the von Neumann
entropy formula (Jozsa et al., 1998):

S=Tr(plnp)

where:
p= The density matrix of the quantum mechanical
system defined as follows:

p=> pily; >< |

i=1

Bemjamin Schumacher 1s a US theoretical physicist,
working mostly mn the field of quantum information theory.
He discovered a way of interpreting quantum states as
information. He came up with a way of compressing the
mformation m a state and storing the information mn a
smaller number of states. This 1s now known as
Schumacher compression. This was the quantum analog
of Shannon's noiseless coding theorem and it helped to
start the field known as quantum information theory.

Schumacher quantum lossless compression algorithm
can be described as follows:

»  Select a typical sub message |V, > and ignore the
rest of the message, where the typical sub messages
15 in the subspace that spanned by {|¥, >,
|'P,>,... | Pv=t and v = 2%,

*  Apply a unitary change of basis U that takes |F, > to
a state of the form:

U|TYYP> - |1P:ump>|0>®‘0>®... ®‘0>

+  Send V..,
Schumacher decompression can be done by appending
the zeros to [¥.,> and applying U™ Moreover
Schumacher proves that the compressed qubits equals to
m(S+8),where, m 1s the length of typical sub message
(Schumacher, 1995).

Braunstein and others introduce a quantum analog of
Huffiman coding by using divide and conquer. Firstly,
they divide the messages mto pairs and apply a merging
procedure to each pair. The merging effectively reduces
the total number of messages from 2° to 2"'. This process
can be repeated. Therefore, after r applications of the
merging procedure, we obtain a single tape containmng all
the messages (in addition to the various length tapes
containing the length information). Let us introduce a
message tape, for simplicity, we simply denote [0+ « « Oh>
by |h,>, etc.

(1> hy> 1|0y,
swap— |0>(];>h,>|1,> [0 » + » Oh;>,,,
stuft— |0l =h>|l> [0« -« 0=,
swap— |0=(1>|0=|1;= | b0 - - b=,
shift= |0>]1,>|0>1> |hh0«. . 0>

In general, at the end the encoder obtains:

I e S P
The encoder truncates the message tape: he lkeeps
the first N(L+8) qubit in the message tape
(Braunstein et al., 2002).

Bostroem and Felbinger (2002) develop a general
framework for variable-length quantum messages in close
analogy to the classical case. They show that the lossless
compression of an ensemble of messages is bounded from
below by its von-Neumann entropy and it 1s possible to
reduce the number of qubits passing through a quantum
channel even below the von Neumann entropy by adding
a classical side chammel they give an explcit
communication protocol that realizes lossless and
instantaneous quantum data compression.

Bemmett gave a constructive method for doing
Schumacher compression. He observed that the
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Schumacher compression can be done by a unitary
mapping to a basis for which the density matrix fi is
diagonal followed by certain combinatorial We can
perform the combinatorial by ordering the basis states
first by the number of ones (from smallest to largest) that
are in the binary expansion of the bits and then refining
this order by a lexical sort of the binary expansion of the
bits (Reif and Chakraborty, 2007).

THE PROPOSED ALGORITHM

Assume that Alice likes to send a stream of
compressed symbols (characters) to Bob through a
quantum channel, the symbols before the compressing
can be writtenas M = [x =[x,;>... x> where, [x>€X, V1=1,
2..., m and m 18 the message length. Alice does not know
what is the coming symbol, thus she does not know the
probability distribution of the message. The following
steps can be used to compress a stream of data [some
notations and steps are borrowed from (Bostroem and
Felbinge, 2002)]:

1. Alice assumes that all the symbols (characters)
have identical probability, 1e, Alice has the
ensemble X = {P, X}, where, X is the set of all symbols
X = {¥> [P, .|P.3, P is the set of corresponding
probabilities which 1s mmtially equals to {1/n, 1/n,... 1/n}
and n 1s the number of symbols. Moreover each symbeol
can be represented by r qubit.

2.7=1,Counter, =0, vVI=1,2..,n

3. Alice prepares the subset L = {|P,>,|P >,... P} =X of
linear mdependent vectors, where these vectors are
selected and ordered by the highest probability.

4. Alice finds the  orthomormal  vectors
B={lw>|w>,.. . wet by performing a Gram- Schmidt
orthornormalization on the list L. thus the set B can be
defined as follows:

W >= [x,>,

i1
[wl>= C{Z W, > W, } |x%, =1i=L1..,d

k=1

5. Alice calculates the unitary matrix as follows:

d
C=>"1Z(1-1) =< w,|

i=1

where, the state |7Z(i-1)> must be represented in a

neutral-prefix, which means that the number of qubit

required to represent the state |Z(i-1)> is equal to the
number of qubit required to represent the longest
symbol(character). Zeros add to the left, for example if the
longest symbol needs 5 qubit then |Z(3)>=(00011>.

6. Alice picks up the next symbol and encodes it as
follows:

|c(y)=>=C|y=>, where, v is the picked symbol

7. Alice calculates the base length L of |e(y)>, where, L 1s
the longest component of the state |c(y)> as defined by
{Bostroem and Felbinger, 2002).

8. Alice truncates the message to L. qubits by removing
r-L leading qubits.

9. Alice sends the truncated message through a
quantum channel and sends its base length I. through a
classical channel (adaptive huffman can be used to
encode the bases length).

10. j = j+1, if j>m then stop.

11. Counter,=Counter, +1, where, t indicates the t* symbol
1n the set X such that | >=[y>.

12. If Counter, =1 then goto step 6

13. If Counter,>1 then update the set of comresponding
probabilities as follows:

Py, >) =Py, >)+1/n
Py, =>)=Ply,>)-(n-1)/n Vk=t
14. Go to step 3.
Bob receives the stream of base length from the classical
channel and the stream of compressed symbols from the
quantum chammel and decompresses the message by
using the following steps:
1-5. Bob performs the steps 1-5 as Alice does.
6 Bob decompresses the base length 1. of the next
symbol.
7. Bobadds (-1.) zeros to the right of the received state
from the quantum channel, call it [v>
8. Bob decodes (decompress) the state |y> as follows:

[y>= [d(y)> = Dly== Cjy>= Cly>
9.7 =7+1, if j>m then stop.

10. Counter, = Counter, +1, where, t is indicate to the "
symbol 1n the set X such that |'¥ >=|y>

11. Tf Counter,=1 then goto step 6

12. Tf Counter, =1 then update the set of corresponding
probabilities as follows:

Py, =)=P(wy, >)+1/n
Ykt

P(y, >)=P(w, )~ (- D/n
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13. Go to step 3.

We can reduce the complexity of the above algorithm
if we consider that the corresponding probabilities will
become closer to the actual distribution after few
iterations. Thus we can ignore the recalculation of
the unitary matrix and jump directly to the step 6, or
the calculation can be postponed until critical changing is
occurred 1n the set of the corresponding probabilities.

THE SIMULATION OF THE PROPOSED
ALGORITHM

Let us first discuss an explicit example to demonstrate
the steps of the suggested algorithm. Assume that Alices
source message set is:

X={faz, b, o>, |d>[e>,[f>, [g>, b=}
whose elements are in the mixed states and given by:

a=1/4/15| 00 > +1/4/15 | 10 > +2/4/15 | 01>
+1/4/15 [ 11 ==1/415(1121)
b=1/4/15|10 > +1/4/15 | 01 > +2/4f15 | 11> +1/4/15 (01121}
c=1/47 100> +2/47 |10 = +1/47 |11 ==1/4/7(1201)"
d=1/+25 00> +3/4/25 |10 > +1/4/25 | 01 >
+3/4f25 |11 >=1/4f25(1313)
e=1/430| 00> +2/4/30 | 10> +3//30 | 01>
+3/430(11>=1/4/30(123 3)"
£ =1/41510> +2/15| 01> +3/4/15 | 11> +1/415(01 2 3)
g=4/41800 > +2//18 | 10> +1/4/18| 01 >
+1/418 |11 > = 1/4/18(4211)
h=1/610>+2/46 | 01> +1/4f6 | 11> +1/4/6 (012 1)

Now consider that Alice’s message 18 M =| eebbd>
=le>|e>|b>|b>|d> and she likes to send it through a
quantum chamnel. Thus Alices linear mdependent vectors
are:

IL.={ab,c f}cX

and the orthornormal vectors B = {jw > |w>,| w> |w,>}
where:

w, = ((0.3780 0.3780 0.7555 0.3780Y"
w, = (-0.4583 0.1833-0.2750 0.8250)
w, = (0.4291 0.7261 -0.5281 -0.0990)'
w, = (0.6804 -0.5443 -0.2722 0.4082)

Hence the first unitary matrix is:

03780 03780 0.7559 0.3780
-0.4583 0.1833 -0.2750 0.8250
e 04291 07261 -0.5281 -0.0990
0.6804 —0.5443 -0.2722 04082

Now Alice can compress the first character (which
consists from two qubits) as follows:

Cl*e>=C1* 1/2/4/15 (123 3) =( 0.82810.28450 0)
= 0.8281]00> + 0.2845|10>

Alice truncates the state to the base length L = 1 qubit
and obtains 0.8281|0>+ 0.2845(1>. She sends the left qubit
through the quantum channel. Bob can decompress the
received data by calculating C,, adding a qubit in the state
|0 to the right of the received qubit and applying:

C,' (0.8281]00> + 0.2845[10>)=1//15(1 2 3 3)" =|e>

To compress the second character, Alice updates the set
of corresponding probabilities and finds the new linear
independent vectors, where these vectors are selected
and ordered by the highest probability as follows:

L=1{eac f1cX

Alice calculates C, and compresses the second character
as follows:

C,*le>=C,* 1/4f15 (1233)" = (08756 0 0 0)
= 0.8756)00>

Alice truncates the state to the base length L = 0 qubit. In
this case there are no qubits left at all, so she sends
nothing through the quantum channel and sends “07
through the classical chammel (note that: the classical bits
are cheaper than the quantum qubits, where, n qubits
contain information equivalent to 2° bits (Lee ef al., 2002)).
Bob receives the classical information 0. In this case he
has to prepare two qubits in the state |00> and apply
the decoder C,' although Alice dropped the coefficient
0.8756, Bob can find the correct character by comparing
and scaling the obtained vector. Alice can compress
the rest of her message by applymg the same
process.

Table 1 shows that where random data and real
application data are used. The proposed algorithm is
coded in Matlab™ 7.0 and is run in a PC with Pentium 4
microprocessor, 2.6 GH and 256 MB RAM. The
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Table 1: The numerical simulation of the new algorithm

No. of qubits

Before After Data Ratio Time
COMpression  compression  source (99) (sec)

500 366 Random data 73.20 0.01
3000 2151 Random data 71.70 0.06
500 202 From a text 58.40 0.01
3000 1690 From a text 56.33 0.06
500 280 From an image 56.00 0.01
3000 1624 From an image 54.13 0.06

compression ratio is calculated with the division of
compressed size by uncompressed size *100. So, lower is
better.

The suggested algorithm is the first quantum lossless
compression algorithm that works without priori
estimation of probabilities; all the previous algorithms
require statistical knowledge. Hence the previous
algorithms require collecting the whole data before the
compression process beging. In the real applications the
suggested algorithm works better because some symbols
tend to be repeated and the whole data are often not
available.

CONCLUSION

The previous quantum compression lossless
algorithms require the statistical knowledge which is often
not available such as live audio and video. Even when the
data 1s available, some quantum application does not
allow performing the measurement more than one time.
The first adaptive quantum compression algorithm
without loss of information is introduced, where the
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source message is not known to the sender, the
suggested protocol can be used for both online quantum

communication and storage of quantum data.
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