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Abstract: In order to design a decision-making framework in production environments, m this study, we use
both the stochastic dynamic programming and Bayesian inference concepts. Using the posterior probability
of the production process to be in state A (the hazard rate of defective products), first we formulate the problem
into a stochastic dynamic programming model. Next, we derive some properties for the optimal value of the
objective function. Then, we propose a solution algorithm. At the end, the applications and the performances
of the proposed methodology are demonstrated by two numerical examples.
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INTRODUCTION

While a production process produces items, an
operator or controller observes it over time and by the
quality of the output classifies the process to be either in
a good or in a bad state. At the beginning of each period
the operator must make one of two decisions; do nothing
(continue) and accept having defective products or
renew (replace) the system and pay a fixed cost (halt). The
process is stochastically deteriorating over time, i.e.,
during one period if the process is in the good state, there
15 a constant probability that it will be m the bad state
during the next period. Decisions and state transitions are
considered instantaneous. The objective is to maximize
the expected discounted value of the total future profits.
This model, which represents a partially observable
Markov decision problem, has been discussed by many
researchers and its applications in many areas can be
found by Monahan (1982), Ross (1983), White (1988),
Valdez-Flores and Feldman (1989), Scarf (1997) and
Wang (2002).

We intuitively expect that the quality of the output in
the good state to be higher than in the bad state. There
are two popular ways of modeling this notion: (a)
stochastic domiance, 1.e., the quality of the output is
stochastically higher in good state than in the bad state
and (b) dominance in expectation, i.e., the expected quality
of the output m the good state 1s higher than in the bad
state. In the application of these models, it can be shown
that the optimal policy initiates a maintenance (or a
replacement) of the operating device if the degree of its

deterioration is greater than or equal to a critical level.
Such a policy is usually called control-limit policy
(Kyriakidis and Dimitrakos, 2006). In other words, the
optimal policy has a control limit and the optimal decision
15 continue if and only if the probability that the process
is in the good state exceeds the control limit.

While Albright (1979), Bertsekas (1976), Lovejoy
(1987) and White (1979) used the stochastic dominance
condition m their modeling, Grosfeld-Nir (2007) showed
that the dominance in expectation suffices for the
optimality of a control limit policy, making the partially
observable Markov decision problem more applicable.

Tagaras (1988) studied the joint process control and
machine maintenance problem of a Markovian
deteriorating machine. Assuming that sampling and
preventive maintenance were performed at fixed intervals,
he searched the best X control chart limits, preventive
maintenance interval and sampling interval to minimize the
time average maintenance and quality control related cost
numerically.

Kuo (2006) studied the jomnt machine maintenance
and product quality control problem in which both the
timing of the sampling action and the sample size were
directly included m the action space of the dynamic
programming model of the system. Unlike previous
studies in this area, he did not impose a mandatory fixed
sample size and fixed sampling intervals on the system.
Instead, he let the dynamic programming mechamsm
dictated the best sample size and sampling epoch based
on the current state of the system. He derived some
properties of the objective function that minimized the
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expected total discounted system cost in the value
iteration algorithm of the dynamic programming model.

In many realworld decision-making problems (like the
ones in which we either continue or halt a production
process, replace or repair a specific machine, whether or
not the available data comes from a certain probability
distribution and so forth), first we divide all of the
probable solution space into smaller subspaces (the
solution 1s one of the subspaces), then we assign a
probability measure to every subspace considering our
experiences and finally based on the current situation we
update the probabilities and make the decision. In
production environments, one of the probability measures
in a decision-making problem is the time between
producing defective products. Assuming a certain
probability distribution, based upon the information from
a sample taken from the process at any time, we may
estimate the parameters of this distribution. If the value of
this parameter 1s less than a given threshold, we will halt
the process.

PROBLEM STATEMENT

Assuming that the true state of a production
process at any stage can be indirectly measured in term
of number of defective items produced by the process
(Simuany-Stern ef al., 1997) and that the tine between
defective products follows an exponential distribution, in
this study, first we estuinate the parameter of this
distribution (A as hazard rate) by a sequential decision-
making framework. Then, if A 1s less than a threshold, the
production process continues and we accept to have a
cost associated with producing defective products.
Otherwise, we halt the process; accepting to pay the
unsatisfied customers’ cost together with corrective
maintenance costs.

In order to estimate the hazard rate (1) at any stage of
the sampling process, in this research, we propose a
sequential decision-making framework for high-yield
production processes such that not only the total costs
of unsatisfied customers, defective products and the
corrective maintenance will be mimimized, but also the
probability of making correct decision 15 maximized. In
other words, at the beginning of each period we want to
either continue the production or supply the customers’
demands based on the current process condition or to
halt the process and do maintenance action while not
being able to satisfy the demands.

In order to make the proposed method more realistic,
we assume that A is a random variable that follows a
gamma distribution. Then based upon an objective
function definition based on cost and risk we derive
several properties of the optimal value function, which

help us to find the optimal policy for a vendor to either
satisfy the customer order or to halt the production
process and consider corrective maintenance action to be
taken in any period. This policy 18 derived based on a
stochastic dynamic programming and Bayesian estimation
approach that develops an optimal framework for the
decision-malking process at hand.

THE MODEL

In production processes, in cases where we are to
decide between producing and not producing a batch, we
are in stochastic state and we never can surely say that a
batch should be produced or should not be produced.
Since the stochastic state of the process may be dynamic,
we may use the concept of the stochastic dynamic
programming to model such problems.

Some developed sequential
analysis mference mn combination with optimal stopping
problem to determine the probability of making correct
decision. One of these researches 1s a new approach in
probability distribution fitting of a given statistical data
that Eshragh and Modarres (2001) named it Decision On
Belief (DOB). In this decision-making method, a sequential
analysis approach is employed to find the best underlying
probability distribution of the observed data. Moreover,
Eshragh and Niaki (2006) applied the DOB concept as a
decision-making tool in response surface methodology. In
this study, we use the concept of DOB to model the
problem. However, before deing so, first we need to have
some notations and defimtions.

researchers have

Notations and definitions: We will use the following
notations and definitions in the rest of the study:

We illustrate an application of the proposed
approach by specifying the distribution of the time to
produce defective products as an exponential distribution
with hazard rate A.

Let t; denote the time between productions of (i-1)st
and (i)th defective products in a production cycle. During
these failures if m defective products are produced, to use
a non-informative prior by assuming that parameters of
gamma converge to zero, 1.e., the prior distribution of 4 1s
gamma (0,0). Then, using Bayesian wmference, the
posterior distribution of 4 is also gamma with parameters

of mand .
2t
=1

(Nair et al., 2001). In other words:

f(A)~Tlo=mp=S "t}
; 1)
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where:

f : The probability density function of A.

R : Defined as the cost of halting preduction
process (it mecludes cost of not satisfying
customer order and cost of maintenance actions).

C : The cost of having one defective product in an
order.

V(4) : The cost asscciated with A when there are n
remaining stages to make the decision.

W, (4) : Defined as the probability of correct choice

associated with A when there are n remaining
stages to make the decision.

d, : The upper threshold for A. If the hazard rate is
more than d,, then we halt the production
process.

d . Defined as the lower threshold for A. If the hazard

rate is less than d’,, we continue the production

process.

0, : The maximum acceptable level of the batch
quality (Accepted Quality Level (AQL)).

3, : Defined as the minimum rejectable level of the
batch quality (Lot Tolerance Proportion
Defective (LTPD)).

A . The maximum acceptable level of the hazard rate.

Ay : Defined as the minimum rejectable level of the
hazard rate.

CS  : Is the event of making the correct decision

g . The size of type-one error in making a decision.

£, : Defined as the size of type-two error in making a
decision.

. The default time to produce the product.
. The total number of products in an order.

i as

Derivations: We may model described the decision-
making problem as an optimal stopping problem in which
in each stage of the decision-making process we take a
sample from a batch and based on the information
obtained from the sample we want to decide whether to
halt or to continue the production or take more samples.

We mentioned that the hazard rate (4) could be
modeled as o

Qo=mB=>t) -
1=1

Hence, P(A:d)) shows the probability of halting a
production process and P(A<d’) shows the probability of
contimuing a production process. Then, by use of the
total probability theorem [1-P(A=d )-P(A<d’)] shows the
probability of neither halting nor continuing and hence
taking more samples. We note that for the third
probability not to be negative we need to have d,>d’,.

If we define n to be the index of the decision-making
stage and A to be the state variable, then RP(A=d)) shows

the cost when we halt the production process,
CHAP(h<d’) represents the cost when we continue the
production process and ¢V, (1) shows the cost when
we continue to the next stage. It 1s obvious that we need
the discount factor a’ to evaluate the cost of the next
stage in the current stage (according to the approach of
stochastic dynamic programming). Hence, we can define
the stochastic dynamic equation of the cost as:

E{cost)~E(cos t| Halt | P(Halt ) +E( cos t| Continue)

P{Continuc) +E[cos t.|(.}0ing to.the nextJ (2)
decision making stage

P{Going to the next decision making stage)

Then the cost associated with A when there are n
remaimng stages to make the decision 1s:

RP(2=d, ]+CHA P(A <d, }+
V, (A= Min

(3
d,d, |(1P(h=d,)-P(h=d, )0 V,(2)

However, we defined CS as the event of correct
decision, so we will have:

P(CS)=P{CS|Halt )P(Halt )+P(CS|Continue )

p(conﬁnue)+p[cs‘}°mg t© the next ] @)
decision making stage

P(Going to the next decision making stage)

It is obvious that HA1 _ 8, and Hhy _ 3, Hence, we have
D D

P(CS|Halt) :j: (A A

p(Cs|Continue)=[" fir)d2

Now we can define the stochastic dynamic equation
of making the correct decision as:

P2 d ) [ i< d ) [ o
W, (%)= Max 02 0.)f, faP(r=d.) [ 1) (3)

d,.d, dh+(1-P(7L =d,)-P(rs d'n))of Wi (%)

Since we are to minimize the objective function given
in Eq. 3 and maximize the objective function of Eq. 5
simultaneously, based on the ratio of the cost to (1-risk)
criterion we combine these two equations in one as:
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H ()= Min

{Vn (*) } (6)

Wo(2)

Tt is obvious that this function should be minimized.
In theorem 1, we will show that the minimum value of
H.(A) occurs at the boundary limits of d, and d’,.

Theorem 1: The optimal value of H, (1) in Eq. 6 ocecur at
the boundary limits of d, and d",.

Proof: We take the first derivatives of H,(4) in Eq. 6 with
respect to d, and d’, and set them both equal to zeros.

That is,

w0 _,

n

W, () (-Fd))(R-aV,, (p))- V. (¥)
(—f(dn))(_[: I oW (A))
(W, (2))

ML) _
ad'_

0=

(b)

W, (A)(F(d, ) (HAC— 'V, (1)) - V. (R)(£(d,))

(jﬂl fodA— oW, (A))

: -0
(W. (1))
In other words:
(a) W, () _ (J:f(l)dlf aW_, (A)) -
V.(p) (R —aV,, (p))
(o) o) ([ roan-aiv, (1) ®)
A (HJLC —aV (l))

As Eg. 7 and 8 share a unique left hand side, their
right hand sides must be equal. However, we notice that
in general the right hand sides cannot be equal. Hence, we
conclude that at most one of the derivatives can be equal
to zero.

Assume the derivative in (a) 18 equal to zero, hence
the equation in (b) is not equal to zero and we conclude
that the optimal values of d’, is in its boundary limits.
However, if we expand equation (7), we will have:

(R, () W 6)-
(I} fodr-aw, , (m)e V...(p)
(CHA— eV, () [ TOI— oW, (1)) -

(R-av,, ()] 02— W, (p)

P(r<d,)=

This is contradiction, because, we showed that the
optimal values of d'; is in its boundary limits. Hence we
can conclude that none of the derivatives (7) and (8) 1s
equal to zero and hence the optimal values of d, and d,
are in their boundary limits. For the condition when the
derivative in (b) is equal to zero, the reasoning is similar.

In order to determine the boundary limits of d, and
d’,, we use the concept of the first and the second type
errors. First type error shows the probability of halting the
production process when the hazard rate of production
process is acceptable and second type ermror is the
probability of continuing the production process when
the hazard rate of production process 1s not acceptable.
Then on one hand if A<}, the probability of halting the
production process will be smaller than € and on the
other hand, in cases where, A>A, the probability of
continuing the production process will be smaller than €,
Hence, as the mean of the gamma distribution is % | fora
process being in a good sate we have: P

(¢4
= B=—

f(A)~T(a=mp) = —=i

()-rlommp) = Feiy = pe

In this case, the probability of halting the production
process (type-one error) 1s

P(lzdn):j:f(h)dhgzl =
1-F(d,)sg = d,=2T'(l-g)

where, f{4) is the probability density function of a Gamma
distribution with parameters of ¢ and ﬁ=% and F(d,)
is the cumulative probability distribution *function of
A evaluated at d,.

However, if we define th, to be the boundary
limit of d, F(d)) i1s an mcreasing function and we
have:

d2F™' (1-e) = th, (9

Similarly, defimng th, to be the boundary limit of d',
for a production process being in a bad state we have:

f(?»)~1"(o::m,[3) = =, = PB=—

o
B Ay
In this case, the probability of contimung the
production process (type-two error) is
P(r=d,) :_[;“f(h)dhg g, =
F(dn) <z, = d,<F(s,)
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where, f(A) is the probability density function of a gamma
distribution with parameters of ¢ and B= l% and F(d) 1s
the cumulative probability distribution” function of
A evaluated at d’,.

Hence

&, <F(s,)=th, (10)

Now, since the optimal values of d, and d’, are in the
boundary limits, i1 order to make the optimum decision,
we can consider the framework given in Eq. 11 to make a
decision. In this Eq.

18 the mean of the gamma distribution for A given in Eq. 1.

In order to identify the signs of the derivatives in
Eq. 11, we note that W (1) and V,(A) are required to be
evaluated. Besides, to obtain these functions the values
of d, and d', are needed. We showed that these values are

OH,(A) _ o OH,(})

at their boundaries, resulting in four cases. These cases
are different combinations of the values for d, and d', as
d, =, d,=th, d', =0 and d’, = th,. We evaluate the
objective function given in Eq. 6 by these cases and pick
the one with the lowest value. Then, we compare the mean
hazard rate,

m

E(\) =
t

i

1=

with the optimum boundary points of the objective
function and make the decision based upon the framework
givenin (11).

In the decision-making framework given in (11), we
note that whenever in a given stage of the sampling
process, the expected hazard rate is either less than th, or
greater than th, we continue sampling in the next stage.
Since this event occurs with a low probability, the
probability of not making the decision in stage n, as n
becomes large goes to zero. In other words, the proposed
method eventually converges to malke a decision.

. m . .
a) if —— <th, = continue the production process

(1)

th, — Since d_ = d_, this case

is not feasible and should not be considered.

o if th,,th, < 0, halt the production process

oo m . .
d)if —— < th,, th, — continue the production process

1 <0, <0=d, =ed" =th, = t,
) ol o, X L=th, 2
b} else, go to the next stage
SH_{ A GH_( M .
2) “( )30, “( )EO:dn:oo,dn:O:gotothenextstage
&, ad',
@) ifth, € ——<
2t
i=1
dH_ (A JH_ (A
3) “( )20, “( )§0:>dnzthl,d'nzth2:> by if th, < o < th, — go to the next stage
ad ad' o
n n th
i=1
2t
i=1
2t
i=1
A, (%) AL, (1) a) ifmizthlahaltthe production process
4 ———=20——"+~:20=d_=th,d =0= >t
ad“ ad'n i=1

b) else, go to the next stage

3622



J. Applied Sci., 7 (23): 3618-3627, 2007

In summary, we propose the following algorithm to
solve the problem at hand:

THE SOLUTION ALGORITHM

According to what we derived in earlier section, the
steps mvolved m the solution algorithm are:

*  Based on the given values of the parameters «, B, R,
H,C,D, g, &, 8, and 8,, in the first stage, n = 1, we
define H (A) using Eq. 6.

+ Using Eq. 9 and 10 and by numerical integrations,
next we determine th, and th, as the thresholds of d,
and d,, respectively.

¢+  Knowing that the optimal value of H,(A)can only
happen in one of the four cases (d, =, d', =0),
(d = e, d') = thy), (d, =th,d’,=0)and (d, = th,
d’, = thy), we evaluate H(A) at these points and pick
the point with the minimum value of H (A).

*  We employ the framework given in (11) to make the
decision at the stage H, (). If the optimal decision
is to go to the next stage, then we go to step 5. Else,
we stop the decision making process.

¢ Setn =n + 1 and determine the optimal value of
H,,(A). Then, gotostep 1.

We note that in order to evaluate the optimal value of
H, (A) in step 5, we need to calculate the optimal values
of H,,(A), H,,(4),... and H,(A).

The flowchart given in Fig. 1 summarizes the steps
mvolved in the proposed algorithm.

Numerical example 1: In this example, the parameters are
set such that the optimal decision is made in stage 2 of
the decision-making framework. Suppose ¢ =35, = 80,
R =100, H = 1000, C = 1, D = 1000, g, = 0.05,€,= 01,
8, =0.04and §, = 0.1. Knowing that A ~ I'(¢c = 5, p = 80),
in the first step of the algorithm we define:

100 P(A = d,)+62.5 P(%
A

(1-»(

~ 0.099P (A

H, ()

In the second step, using Eq. 9 and 10 for the
production process to be m good and bad states,
respectively, we have:

f(?x)m—galmna[:i,()sm:ll.‘i] and d, > F' (1-2,) = th, (12)
f(») ~gamma(5,%: 50] and = d', <F'(g,) = th, (13)
which are numerically evaluated for th, = 0.091 and
th, = 0.048.

Then 1n the third step of the algornthm, we evaluate
the objective function for different possible boundary
values of d,,d’, and then choose d, and d’, that mimmizes
the objective function, i.e:

d, =0.09%,d', = 0= H, (0.0625) =1003.69
dy = o0,d’ = 0.048 = I, (0.0625)=193.98
d, = 0,d} = 0= H,(0.0625) = no answer
d, =0.091,d", = 0.048 = H,{0.0625) =253.11

Hence, the optimum values for d, and d, are d, = =,
d’, =0.048.

In the fourth step of the solution algorithm, since the
expected hazard rate is equal to the mean of the Gamma
distribution with parameters ¢ = 35, p = 80, that is 0.0625,
we are in state (1-a) of the decision tree in Eq. 11 and
should continue to the next stage.

In stage n =2, assume & = 1 and p = 280. According
to the seolution algorithm, first we should determine

V| A= 10 =0.0454 | and W, (0.0454).
220

In the second step, using Eq. 9 and 10 for good and
bad states we have

10
f(r)~ Gamma(lo,mf 250] and (14)

d, 2F*(1-g)=th, = th, =0.0628

10
f(n)~ G'amrna(lif,‘l,a = 100] and (15)

=d' <F'(g)=th, =th, =0.0622

Then in the third step of the algorithm, we evaluate
the objective function for different possible boundary
values of d,,d’, and then choose d, and d’, that minimizes
the objective function, 1.e.:

d, =0.036,d, =0=H, (0.0454) =66448.18
d, = o,d', = 0.024 = H, (0.0454)=117.67

d, = 0,d" = 0= H,(0.0454) = no answer

d =0.036,d", =0.024=H, (0.0454) =15256

3623



J. Applied Sci., 7 (23): 3618-3627, 2007

Input the values of the parameters, set
n =1 and define H () vsing Eq. 6

for i = 1, n, determine
the optimal value of
V3, Wi(A} and
H)

[ Determine th, and th, using Eq. 9 and 10

Evaluate H, (3) at the four corner points
and pick the one with the minimum
value

Setn=n+ 1, take more
samples and
determine o and p

A

Apply the framework given in Eq. 11

Fig. 1: The flowchart of the proposed algorithm

Hence, the optimum values for d;, and d’; are d, = <,
d’', =0.0622, V,(0.05454) = 39.76 and W ,(0.0454) = 0.337,
which enables us to calculate the values of V,(0.0454),
W,(0.0454).

Then in the fourth step of the algorithm, we evaluate
the objective fimction for different possible boundary
values of d,,d’, and then choose d, and d’, that minimizes
the objective function, 1.e.:

d, =0.0628,d", =0 = H,(0.0454) =156 85

d, = o0,d", = 0.0622 = H, (0.0454) =117.82

d, =0,d’, =0=H,(0.0454) =117.98

d, =0.0628,d, =0.0622 = H, (0.0454) =136.21

Have the decision been
made?

In the fifth step of the solution algorithm, since
the expected hazard rate is equal to the mean of
10, that
is 0.0454, we are in state (1-a) of the decision tree
m Eq. 11 and should centinue the production
process.

the Gamma distribution with parameters o

Numerical example 2: In this example, the optimal
solution is to halt the production process at the first
stage of the sampling process. Suppose o =5, p = 40
and other parameters are the same as the numerical
example 1.

In the second step, using Eq. 9 and 10 for a good and
a bad process, respectively, we obtan
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5
f(?\)m—G‘aJnma[S,ﬁ:lZSJ and (16)

d, =F'(1-g)=th =th =0.091

f(?L)~Gamma[5,%:50J and 17

=d', <F'(e,) =th, = th, = 0.048

Then, m the third step of the algorithm, we evaluate
the objective function for different possible boundary
values of d,,d’, and then choose d, and d’, that minimizes
the objective function, 1.e:

d = 0.001,d, =0=H,(0.125)=159.02

d, =co,d', =0.048= 1, (0.125)= 52782

d, = o0,d', = 0= H,(0.125) = no answer

d, = 0.091,d", = 0.048 = H, (0.125)=168.59

Hence, the optimum values for d, and d’; are d, = 0.091,
d, =0

In the fourth step of the solution algorithm, since the
expected hazard rate 13 equal to the mean of the Gamma
distribution with parameters & = 5, p = 40, that is 0.125, we
are in state (4-a) of the decision tree m Eq. 11 and should
halt the production process and do maintenance action.

An error study: Here, we investigate the performance of
the proposed method m terms of type-one and type-two
error. To do this, let us consider the simplest case where
we have only one stage for the decision-making process
(n=1). The objective function for this stage 1s:

H () RP(A2d)+CHAP(A<d))
1 P(h2d,) [ f00d+ B(h<d,)[" £

Tt can be easily shown that to minimize H,(4), either
P(Azd) or P(A<d’) should be equal to zero. To prove it,
assume

R < CHM™
= =T E
sz(l)dl L fydx

Ifin the minimum value of MIM{EL (M)} | both P(A>d,)
and P(A=>d’,) are more than zero, then we have

Ei{l{Hl(l)} < %Iié’l{Hl (W)=
RP(r>d )+ CHAP(A<d,)
P(h2d,)[ f(dh+ P(h< d;,)jsl £

R R CHA
< N = — = "
sz(l)dl sz(x)dx J‘D fidA

which is contradiction. Hence, we should only consider
two cases:

Case 1: d;=th,,d", =0
Case 2: d' <th,, d, ==

For given values of R = 100, C =1, D = 1000, a
defective production rate of 0.05, type-two error = 0.1,
A, =005and A, = 0.1, based on the mformation from some
simulated samples of different sizes, suppose we want to
estimate the size of type-one error of the proposed
method. Table 1 shows the results of this estimation.

The first column of Table 1 shows samples with
different sizes taken for evaluation. The second column 1s
the threshold value of the hazard rate of the production
process. It means that if the hazard rate (defective product
rate) 18 less than this threshold, we continue producing
items. In column three, the probability of the right
decision (continuing the production process) has been
given. This probability has been calculated by Gamma
distribution. The results of Table 1 show that, as
expected, the type-one error associated with the
performance of the proposed methodology decreases as
the sample size increases. However, as the cost increases
with an increase in the sample size, we need to determine
the optimum value of the sample size.

Based on the information given in Table 1, we may
estimate the probability of making correct decision
(accepting the batch and continue the process) as a
function of sample size. The regression function using
excel software is shown in Fig. 2, in which the coefficient
of determination is 0.8356.

If C, denotes the fixed cost associated with a sample
of size one, R denotes the cost of halting the process,
then using the regression function y = 0.0243In(x) + 0.8989
and y denotes the probability of correct decision, hence
the cost fimetion of taking a sample of size x 1s:

g(x) = Cyx + (1-(0.0243 In(x) + 0.8989)) R

1,021
;g 1.01-
_§ 1.004
099
0.98
0.971
'8 0.96
20951
20,941 L
0.93 T T T T T T T T T 1
0 16 20 30 40 50 60 70 80 90 100

Sample size (x)

y = 0.0243In{x) - 0.8989
R*=0.8356

Fig. 2: Regression function for the probability of correct
decision
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Table 1: Type-one error estimation of the proposed method for different

sarmp les

Sample Rejection Probability of Type-one
size threshold accepting the batch error

10 0.077 0.942113 0.057887
20 0.075 0.978127 0.021873
30 0.074 0.990765 0.009235
40 0.074 0.996570 0.003430
50 0.074 0.998699 0.001301
60 0.074 0.999500 0.000500
70 0.073 0.999684 0.000316
80 0.073 0.999868 0.000132
90 0.073 0.999945 5.54E-05

Table 2: Type-two error estimation of the proposed method for different

sarmples

Sample Probability of accepting
size the batch (type two error)
10 0.246920

20 0.124781

30 0.065763

40 0.039253

50 0.023899

60 0.014745

70 0.006926

80 0.004189

90 0.002548

which has its mimimum value at

e

X =—_—.
0.0243R

In order to estimate the type-two error of the proposed
method, let a process to have a defective product rate of
0.1. Then, the probability of making a wrong decision
(continuing the production process) has been calculated
based upon different sample sizes and is given in Table 2.
The results of Table 2 mdicate that as the sample size
increases the probability of accepting a batch with a
wrong defective rate decreases; implying a similar trade-
off between the costs of sampling and the probability of
correct decision.

The evaluation study for the cases in which the
decision 1s made in stage n>1 can be performed in a
similar way.

CONCLUSIONS

In thus research, we applied Bayesian inference and
stochastic dynamic programming to model a decision-
making problem in production environments in which we
observe the time between breakdowns based on the
produced defective items. Assuming the time between
breakdowns follow an exponential distribution with
parameter A, to estimate A at any stage of the sampling
process, we proposed a sequential decision-making

framework such that not only the total costs of
unsatisfied customers, defective products and the
corrective mammtenance will be minimized, but also the
probability of making correct decision is maximized. In
order to demonstrate the application of the proposed
framework, we provided two numerical examples.

For further research, we propose either to consider
some other objective functions or to employ other
functions to model the state of the system. Moreover, we
can employ other functions to model the probability of
correct choice when the production process is accepted
or rejected.

REFERENCES

Albright, S.C., 1979, Structural results for partially
observable Markov decision processes. Operat. Res.,
27:1041-1053.

Bertsekas, D., 1976. Dynamic Programming and Stochastic
Control. Academic Press, New York.

Eshragh, J.A. and M. Modarres, 2001. A new approach to
distribution fitting: Decision on beliefs. Proceedings
of the 53rd IST Session, Seoul, Korea.

Eshragh, I.A. and 5. T.A. Niaki, 2006. The application of
decision on beliefs in response surface methodology.
Proceedings of the 4th International Industrial
Engineering Conference, Tehran, Iran.

Grosfeld-Nir, A, 2007. Control limits for two-state partially
observable Markov decision processes. Hur. T.
Operat. Res., 182: 300-304.

Kuo, Y., 2006. Optimal adaptive control policy for jomt
machine maintenance and product quality control.
Eur. T. Operat. Res., 171: 586-597.

Kynakidis, E.G. and T.D. Dimitrakos, 2006. Optimal
preventive maintenance of a production system with
an intermediate buffer. Eur. J. Operat. Res., 171: 86-99.

Lovejoy, W., 1987. Ordered solution for dynamic
programs. Math Operat. Res., 12: 269-276.

Monahan, G.E., 1982. A swvey of partially observable
Markov decision processes: Theory, models and
algorithms. Manage. Sci., 28: 1-16.

Nair, V.N., B. Tang and L. Xu, 2001. Bayesian mference
for some mixture problems in quality and reliability.
T. Qual. Technol., 33: 16-28.

Ross, S.M., 1983. Introduction to Stochastic Dynamic
Programming. Academic Press, London, UK.

Scarf, P.A., 1997. On the application of mathematical
models in mamtenance. Eur. J. Operat. Res.,
99: 493-506.

Sinuany-Stern, Z.3., [ David and S. Biran, 1997. An
efficient heuristic for a partially observable Marlov
decision process of machine replacement. J. Comput.
Operat. Res., 24: 117-126.

3626



J. Applied Sci., 7 (23): 3618-3627, 2007

Tagaras, G., 1988. Integrated cost model for the joint ~ White, C., 1979. Optimal control-limit strategies for a

optimization of process control and maintenance. partially observed replacement problem. Int. J. Syst.
I. Operat. Res. Soc., 39: 757-766. Sei., 10: 321-331.

Valdez-Flores, C. and R.M. Feldman, 1989. A survey of White, D.J., 1988. Further real applications of Markov
preventive maintenance models for stochastically decision processes. Interfaces, 18: 55-61.

deteriorating single-umt systems. Naval Res.
Logistics, 36: 419-446.

Wang, H., 2002, A swvey of mamtenance policies
of deteriorating systems. Fur. J. Operat. Res,
139: 469-489.

3627



	JAS.pdf
	Page 1


