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Abstract: In this study, different synthetic earth models have been developed for providing as accurate as
possible mapping between inputs and outputs. The input parameters were seismic travel times fed to input layer
of ANN and the output parameters were interval velocity and structural dip fed to output layer of ANN. After
traming the so structured ANN the generalization ability of ANN can create desirable outputs for new input
patterns. As dipping layered structures has more occurrences in nature and in subsurface of earth (like anticline
shapes of hydrocarbon traps), therefore obtaining an accurate initial velocity model for dipping structures as
well as dip values of each layer is an important part of later seismic imaging procedures especially in areas with

little or no 1mtial geological information available.
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INTRODUCTION

The mneed for more reliable estimation of
characteristics of geological structures based on seismic
mterpretation especially in o1l and gas fields 1s of growing
concern. Therefore the level of accuracy of the
characterization can have an economically sigmficant role
in many countries. Accuracy of seismic interpretation
depends upon factors mcluding but not limited to the
quality of the data as well as complexity of the given
geological structure. Velocity analysis as the basis of
seismic processing can considerably be affected by these
factors. In recent years many velocity analysis techniques
have been applied by geophysicists. All these techniques
seem to be accurate in many cases vet associated with
some difficulties.

Some of the errors which affect the accuracy of the
velocity models are recognized to be originating from the
existence of noise, direct mpact of interpreter and
complexity of geological structures (Roeth and Tarantola,
1994). In some methods like iterative migration velocity
analysis the direct interference of the interpreter is
required in every stage of the process (Al-Yahya, 1989).
Furthermore experience based interpretation requires
mitial geological information (Bradley, 2003).

The common method for seismic velocity analysis
comprises computation of the observed arrival times for a
given model to be transferred on seismic sections. If the
predicted hyperbolas match with the observed ones, then
the velocity model is considered to be correct. Otherwise,

it 1s required to change the model until a proper fit
between the observed and the computed hyperbolas is
achieved (Yilmaz, 1987). This analysis does not always
result in an accurate estimation of velocity model.

The nversion methods are based on obtaining the
velocity model (parameters) using the observations
(reflection travel times), whereas the forward methods
produce the seismograms according to a velocity model.
Forward methods are numerically simple while inversion
methods are associated with much higher complexity
regarding to given unknown parameters. Inverse
modeling requires time consuming numerical methods to
be employed. To minimize or eliminate errors associated
with  velocity modeling, application of different
approaches other than the conventional techniques
seems to be a reasonable try. Among these methods is the
Artificial Neural Networks (ANN) which has shown to be
of relative applicability. During the last twenty vears
ANN’"s have matured to be practical tools in many areas
of computing, such as pattern recognition, function
approximation, system identification and control and data-
analysis (Lampinen, 1997). In recent years there have been
several cases of application of ANN’s to many
geophysical aspects (Murat and Rudman, 1992; Dai and
Mac Beth, 1997, Calderon-Macias et af., 1997, Wang and
Mendel, 1992; Poulten et al., 1992; Langer et al., 1996;
Calderon-Macias ef al., 1998; Calderon-Macias et al.,
2000; Wu et al., 2000; Van der Baan and Jutten, 2000).

Some of the relevant applications of ANN 1n velocity
modeling are found in the literature as follows:
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¢ Trace editing (Van der Baan and Tutten, 2000)

¢ First break picking (Murat and Rudman, 1992)

+  Parameter estimation (Calderon-Macias ef al., 2000)
*  Location of subsurface targets (Poulten ef a/.,1992)
+ TInversion (Roeth and Tarantola, 1994)

Soft computing techniques such as expert systems,
Fuzzy Logic, Neural Networks and other techmiques differ
from conventional hard computing in that they are
tractable, robust, efficient and inexpensive (Nikravesh and
Aminzadeh, 2001).

Therefore the fact that ANN can produce a functional
relation between the mput and output shows that it can
be used as a reasonable mapping system. The application
of the mapping function to a set of data sets 1s
mathematically simple and fast. This can be a considerable
advantage over systematic search techniques, such as
simulated annealing or genetic algorithms, since the
stability of the results that are found with the neural
network can be tested easily with examples not used for
the estimation of the mapping function (Langer et al.,
1996).

There 1s always a certain level of residual (noise
remaining after mitial noise filtering)
environmental/ambient noise present on the recorded
seismic data, hence, neural networlk training with noise-
free synthetic seismic 1s less than optimal (Fitzgerald and
Bean, 2001).

Trained ANNs have shown to act sufficiently well in
cases where the data is noisy and deficient. These
Networks can eliminate the disturbing noises and select
the important parts of the mput (Roeth, 1993; Roeth and
Tarantola, 1994).

The objective of this study 1s to construct an ANN
which adopts the reflection arrival times for different
dipping layers as the input and compute the earth model
as the output wsing synthetic data. Since geological
settings of different features such as oil and gas
reservowrs are mamly found to be m form of dipping
structures such as anticlines and salt diapir flanks rather
than flat horizontal ones, the study focuses on
applicability of ANN to such models.

According to literature review, ANN method which
has shown to be of relatively lugh applicability to many
geophysical problems was selected as a stand-alone
method in comparison with other techniques. As a first
step, this study mainly deals with synthetic seismograms
which can be generated for many geological models. This
is presumed to provide a good basis for assessment of the
applicability of ANN and to open rooms for further
applications to real data sets of different geological
settings.

MATERIALS AND METHODS

ANNSs have the ability to map a space which 1s called
mput space to another one which 1s called output space.
ANNs can be trained so that they can compute desired
output patterns according to input patterns. The
characteristic of thus techmique which makes it
outstanding for solving inversion problems 1s that ANNs
not only can compute output patterns for known input
patterns but also for unknown ones it can calculate the
accurate outputs which 1s based on extrapolation. This
property 1s called generalization. Neural Networks are
dynamic systems which contain many simple processing
units. Each of these units is called neuron.

The most popular neural network architecture 1s the
multilayer feed-forward network of sigmoidal computing
units  (Lampinen, 1997). This study is based on
application of multilayered ANNs which contains an input
layer, a hidden layer and an output layer. Information
flows from input to hidden and then through output layer.
Multilayered ANN in which information flows forward
from input layer to output layer is called multilayered
feed-forward ANN. Connections are only between
adjacent layers and there is no comnection between
neurons in the same layer (Fundamentals of Baclk-
propagation Algorithm, HELP Topic of MATLAB 7.0).

A neuron i1s a simple processing node which
calculates the output O according to an input I. The value
of input T for neuwron i outside of input layer is the
weighted sum of all outputs of neurons in previous layers

(Eq. 1).

L=ZW.0, (1)
]
The value of output is calculated according to a
sigmoidal threshold function as follows (Eq. 2):

- (2)
1+ exp(-1,)

As the structure and the rules of feed-forward flow
are defined, the network should go under traimng. The
structure and output function do not change during
traiming. Therefore traimng comprises the process of
initializing the weights W (which are the only free
parameters in network and are also the connection
between neurons) so that the error between the computed
output and the desired output for all samples is minimized.
Therefore minimization of error between calculated output
O, and desired output O, for all o samples is a
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standard optimization problem which is called the back
propagation of emrors mto the network. For error
minimization, the least squares equation has been selected
as a basic equation (Eq. 3):

M(W) =3 >0 - o) (3)

Where:
¢ = Runs over number of samples
I = Runs over number of outputs.

The least squares optunization problem can be solved
using different methods. Among these methods, quasi-
Newton algorithm s found to be appropriate. In
optimization mathematics this method 15 a well known
algorithm for finding local maxima and local minima of
functions like Newton’s method but it approximate the
inverse Hessian matrix for accelerating the iteration. BFGS
method 18 one of the most popular quasi-Newton
algorithms. In mathematics, the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method is a method to solve an
unconstrained nonlinear optimization problem.

The principal idea of the method 15 to construct an
approximate Hessian matrix of second derivatives of the
function to be minimized, by analyzing successive
gradient vectors. This approximation of the function’s
derivatives allows the application of a quasi-Newton
fitting method 1n order to move towards the mimmum in
the parameter space. The advantage of using quasi-
Newton algorithm is its rapid convergence and
consequently reduced time and costs of computation
(Faster Traimmng, Help topic, MATLAB 7.0). This
algorithm is also suitable for function approximation
(modeling).

When the weights corresponding to the minimum
errors have been calculated and desired outputs for all
samples have been obtained, the networlk is congidered to
be trained and training stage is stopped. This network can
be applied for mapping input space into output space
which m this study are considered to be picked travel
times (R inputs) and corresponding velocity and dip
respectively (o output) (Fig. 1). In Fig. 1 an elementary
neuron with R mputs 13 shown. Each input 1s weighted
with an appropriate w. The sum of the weighted inputs
and the bias forms the input to the transfer function f.
Neurons may use any differentiable any transfer function
f to generate their output.

After tramming (1.e., mimmization of errors) the network
should be tested against known inputs. The ANN
response to these known inputs is evaluated in terms of
accuracy of the simulation. Afterwards the ANN 1s ready
for generalization which basically deals with introduction

Inhput Neuran w Vector input
N M
LI I 4  R=No.of elements
" " in input vector
1
— _J
a=f(Wpth)

Fig. 1: Simplified algorithm employed i ANN process

. — — — — i Praparing the data set with
Assemble training datal-— - - - 1 he know input and output
¥

----- Io——-pj DefiningtheNo. of

neurons in each layer

Train the ANN [————-—1____ +{" " Error minimization i
Test the ANN [-—---~____ | Simulate the network
response to Known inputs
| Generalization the ANN|- - - - - - . ___ ) Simuiate the network
response to New inputs

Fig. 2: The overall ANN procedure flowchart

of unknown input values. However, this set of input data
can already have a corresponding set of known outputs
which can be compared to ANN response. The overall
ANN procedure 1s described in Fig. 2.

Synthetic data generation: A number of dipping layer
earth models were considered to be the case in this study.
These include the following dipping layered models, the
presumed characteristics of which are summarized in
Table 1:

*  One dipping layer.
¢+ Three dipping layers with the same dip and same

direction.

*  Three dipping layers with the different dips and same
direction.

¢+ Two dipping layers with the same dips and different
direction.

Congidering the assumed data as described in
Table 1, corresponding travel times were calculated by a
forward modeling scheme using RAYINVR software
(Zelt and Smith, 1992; Zelt, 1993). These corresponding
data sets (L.e., two way travel times as mput and velocity
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Table 1: Characteristics of the dipping layered models employed for the
ANN application

Velocity (km sec™')  Depth (km) Dip (Degrees)
Model
No. Min Max Min Max Min Max
(1) Up-dip 2.30 3.65 0.10 0.40 2 20
Down-dip 0.62 5.85
(2) Up-dip 1.50 1.50 0.30 0.60 2 20
Down-dip 0.82 6.05
Up-dip 1.60 1.96 0.50 0.80 2 20
Down-dip 1.02 6.25
Up-dip 1.80 2.52 0.75 1.05 2 20
Down-dip 1.27 6.50
(3) Up-dip 1.50 1.50 0.30 0.60 2 20
Down-dip 0.82 6.05
Up-dip 1.60 1.96 0.50 0.80 5 23
Down-dip 1.81 716
Up-dip 1.80 2.52 0.75 1.05 7 25
Down-dip 2.59 .04
(4) Up-dip 1.50 1.50 0.30 0.60 2 8
Down-dip 1.82 2.70
Up-dip 1.60 2.9 1.32 3.20 2 8
Down-dip 1.84 5.30

and dip as output) were fed to ANN in order to train the
networks. The task of the feed forward ANN 1s to map
Common Midpomt (CMP) gathers at control locations
along a 2-D seismic line mto seismic velocities within
predefined velocity search limits (Calderon-Macias et al.,
1998). Afterwards the ANN was tested using part of these
data sets. As the final steps, inverse modeling was
performed using the trained and tested ANN. This
procedure (ie. generalization) calculates the model
characteristics (velocity and dip) corresponding to
unknown input travel times. The overall procedure of the
study is broken down into two main stages as described
mFig. 3 and 4.

The performance goal for all ANN applications was
set to 10E-5.
performance 1s considered accurate for different models,

In other words, the generalization

when this goal (performance goal error) 1s achieved.

The networks used for the four earth models
consisted of three layers (i.e. input, hidden and output
layers) with different number of neurons in each layer.
Determination of number of hidden layers and associated
newrons in ANN structure is usually done based on
experience in accordance with the nature of the given
problem. However in this study, one hidden layer was
assumed to be sufficient for the function approximation
application. The number of neurons n the three layers of
ANN structure based on which the number of samples
required for training were determined are summarized m
Table 2. For all the samples, different number of
geophones was considered while the spacing between the
geophones was set to 0.1 km. The maximum horizontal
offset was set to 3.6 km fora sample CMP gather with
16 traces.

1 3659-3668, 2007

- - ining with ANN error back-
Synthetic velocity | pmn algorithm nsing quasi-
and dip data Newton technique

v
[PSTRAMP|
v
h J Testing (Simulation) for data sets
m ) known to training process
Fig. 3: Procedure flowchart employed for forward
modeling
[N etic veloci
iy data

h 4
T Generalization of network
m]sguﬂfdt;a for data sets unknown to
Calculated velocity and dip data |

Fig. 4: Procedure flowchart employed for inverse modeling

Table 2: Characteristics of the training structure of the ANN
No. of neurons No. of samples

Moadel Triput Hidden  Output  Training

No. layer layer laver and testing  Generalization

1 16 10 2 715 77

2 24 12 6 688 77

3 24 12 6 693 77

4 24 12 4 506 77
RESULTS AND DISCUSSION

To evaluate the performance of the ANN for the four
differently layered dipping earth models, the critical
parameters were examined. These mnclude;, number of
iterations, performance function values in the training
stage as well as errors in velocity and dip calculations in
generalization stage. The number of iterations can be of
importance in terms of the time required for training. In
case of real and complicated earth models, the required
time of computation may have an influence on the
applicability of the analysis method.

More importantly, the errors between the calculated
and deswed wvalues of velocity and dip in the
generalization stage of ANN application can be used for
evaluation of the accuracy of the determinations.
Accordingly, these error values were calculated for the
four earth models, the results of which are presented 1n
Table 3.

One dipping layer: Application of ANN to dipping layers
is considered a first attempt in inversion of seismic data
since the previous studies were found to be based on flat
reflectors to the extent reviewed.
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Table 3: The results of error values obtained for four earth models

Generalization error valies

Training stage

Velocity (km sec™) Dip (degrees)
No. of Performance
Model No. iterations function Max Average Negative Max Max Average Negative Max
1 4000 0.00179064 0.063185 -0.044780 -0.00170 3472 0.252 -2.8186
-0.00537 -0.060600 -0.00675 0.974 0.154 -0.7012
2 4000 0.000146351 0.048880 0.020435 -0.00992 0.924 0.113 -0.7170
0.112470 0.053295 0.00537 0.924 0.082 -0.8312
0.007340 0.002942 -Te-05 0.793 -0.085 -0.9680
3 4000 5.25489¢-005 0.031996 0.010415 -0.00377 0.643 -0.074 -0.8120
0.091290 0.043404 -0.00989 0.582 -0.113 -0.8780
8e-05 2.424e-06 -0.00012 0.016 -0.009 -0.0660
4 4000 1.00863e-005 0.036660 0.003811 -0.02738 0.032 0.007 -0.0500
. . 100_
. For this mpdel we.calculated 790 data sets with Performance is 0.00179084, Goal is 1c-005
different velocities and dips. The CMP gathers have been
. . . —1
provided for these 790 samples with 0.1 km receiver 165
separation for 16 geophone position according to source :g
location. Therefore the maximum offset for the last % 10 '\—\
geophone is 3.6 km in each CMP gather. The maximum x ] .
(1.e., horizontal) coordmate for velocity model was % 103
considered to be 15 k. The travel times were computed £
for each receiver position at different depths and B T
velocities according to the dip of this layer. The _
.. . 10
convolved seismic trace comresponded to a Ricker
wavelet. The only parameter of importance were _
idered to be the travel time, therefore each reflecti O o 10w 130 2000 230 300 3500 40
considered to be the travel time, theretore each retlection SO0 1000 1500 2000 2500 3000 3500 4000

was assighed one unit amplitude. After computing travel
times for 790 examples (using CMP gather) the ANN was
structured.

In this example the total number of weights or
connection between neurons is determined to be
(16x10)+10x2) =180 between the different layers of neural
network. For this network at least 360 data (1.e., 270 data
for training and 90 data for testing and generalization)
were needed.

After traming the ANN with quasi-Newton traming
algorithm for 715 examples, the results were obtammed m
(Fig. 5-7). The velocities were normalized to 3.7 km sec™
and the dips to 20 degrees. After 4000 iterations the
performance function was stabilized at 0.00179084 n
(Fig. 5). Although the performance function is about two
orders of magnitude greater than the preset performance
goal (i.e., 1e-003), the results seemed to be satisfactory
and accurate. The calculated velocity for 77 data sets
versus desired velocities that were not mcluded m
training procedure is presented in (Fig. 6). The
generalization capability of ANN shows that the
calculated velocity for these examples 1s fair enough
compared with desired velocity for these unknown data
sets.

The maximum error between desired and calculated
velocity is 0.063185 km sec™ and the negative maximum
error is -0.04478 km sec™". The average error between

4000 Epochs

Fig. 5. The performance function of ANN after 4000
iterations for one dipping layer

A One layer

2.57 3.07 3.57

Desired velocity (km sec™)

2.07 4.07

Fig. 6 Desired velocity vs. calculated velocity for one
dipping layer

desired and calculated velocity is -0.0017 km sec™.
Accordingly, it can be concluded that the ANN has been
adequately trained. The dip calculation by ANN also
shows fairly acceptable errors for these 77 data samples
as described in (Fig. 7). The maximum and negative
maximum errors between desired and calculated dips were
3.4728°% and -2.8186°, respectively. The average error
shows that the dip is also calculated accurately for this
one dipping layer earth model.
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Fig. 7: Desired dip vs. calculated dip for one dipping layer

Three dipping layers with the same dip and same
direction: The second approach in tlus study was
considered to be three dipping layers reflectors with
same dip. The first layer's velocity was set constant
(ie., 1.5 km sec™") but the velocities of the second and
third layers varied between 1.6 and 2.52 (km sec™). All
layers have the same dip starting from 2° to 20°. For this
geological model we calculated 770 data sets with
different velocities, depths and dips. The CMP gathers
have been provided for these 770 samples with 0.1 kan
receiver separation for 6 geophone position according to
source location. The maximum offset is 15 km. Different
synthetic seismograms for these earth models sunulate
CMP gathers with & traces. The convolved seismic trace
corresponds to a Ricker wavelet with a central frequency
of 22 Hz. Tt is worth noting that again as the only
parameter which is important is travel times data so that
each reflection 1s assigned umt amplitude.

After computing travel times for 770 examples (using
CMP gather) it 1s time to build the neural network
structure.

The feed-forward Neural network consists of three
layers (input, output and hidden layers). The input layer
has 24 neurons (8 traces for each layer), the output layer
has 4 neurons (velocities for each layer and a constant dip
for three layers) and the hidden layer consists of 12
neurons. In this example the weights or connection
between neurons is (24x12)+(12x4) = 336 connection
between the different layers of neural network. For this
network we need approximately 720 data (540 data for
training and 180 data for testing and generalization). First
we trained our network with quasi-Newton training
algonthm for 688 examples. The velocities are normalized
to 3 km sec™" and the dips to 20°. After 4000 iterations the
performance function received down to 0.0001 46351 which
is not so close to the goal (1e-003) as it can be seen in
(Fig. B). As we mentioned earlier it 1s better to use more
data for training for getting better results in generalization

10° 4
Performance is 0.000146351, Goal is 1e-005

S
ol

—_
<
1

—_
(=1
I

Training-blue Goal-black
=
1

o

10°¢ T
0 500

1000 1500 2000 2500 3000 3500 4000
4000 Epochs

Fig. 8: The performance function of ANN after 4000
iterations for three dipping layers with the same
dip and same direction

_ @ Firat layer

§ | e
| |

8 2501 e

|
2.00- n |
. add

1.00 1.50 2.00 2.50 3.00
Desired velocity (km sec )

Fig. 9: Desired velocity vs. calculated velocity for three
dipping layers with the same dip and same
direction

procedure. Therefore we used maximum amount of the
data for tramning. The results of simulating the outputs for
77 new input patterns for velocity estimation is presented
in (Fig. 9). The velocity calculation shows relatively high
accuracy. The average velocity error is increasing
(0.053295 km sec™") by increasing the number of layers.
But this ANN is still well generalized and it can calculate
the velocity values for new input patterns accurately. The
desired dip versus calculated dip 1s presented mn (Fig. 10).
The average dip error between desired and calculated dip
is not actually changing from first to third layer.

Three dipping layers with different dips and same
direction: The third approach is to consider a geological
model of three dipping layers with different dips but in
the same direction. The velocity of first layer is constant
(1.5 km sec') and the velocities of second and third
layers are varying between 1.60 and 2.52 km sec™' and dip
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Fig. 10: Desired dip vs. calculated dip for three dippmng
layers with the same dip and same direction

ranges from 2 to 25° as described in Table 1. For this
geological section with such properties we calculated
770 data sets with different velocities, depths and dips.
The CMP gathers have been provided for these
770 samples with 0.1 km recewer separation for 8
geophone position according to source location. The
maximum x-coordinate is 15 km. The travel times were
computed for each receiver position for different depths
and different velocities according to dip of these layers.
After computing travel times for 770 examples (using CMP
gather) it is time to build the neural network structure.

The feed-forward Neural network consists of three
layers (mput, output and lidden layers). The mput layer
has 24 neurons (8 traces for each layer), the output layer
has & newrons (velocity and dip values for three layers)
and the hidden layer consists of 12 newons. In this
example the weights or connection between neurons is
(24x12) + (12x6) = 360 connection between the different
layers of neural network. For this network we need
approximately 720 data (540 data for traming and 180 data
for testing and generalization). After constructing the
ANN structure it 1s time to train the network with maximum
amount of data available for training. We trained our
network with quasi-Newton training algorithm for 693
examples. The velocities are normalized to 2.6 km sec™
and the dips to 25°.

After 4000 iterations the performance function
approached down to 5.2548%e-005. The performance
function 18 presented in (Fig. 11). For sinulating the
network for unknown data we generalize this network for
77 examples which have been excluded from the training
procedure. The plot of desired velocity vs. calculated
velocity 1s presented in (Fig. 12). The average error value
for velocity estimation 1s going higher when the mumber
of layers is increasing.

The results of calculated dips for 77 examples
excluded from the traiming data 1s presented mn (Fig. 13).
This shows that the dip value has been calculated so well

104 Performance is 5.25489¢-005, Goal is 16-005

1074
1075

1073

Training-blue Goal-black

1000 1500 2000 2500 3000 3500 4000
4000 Epochs

0 500

Fig. 11: The performance function of ANN after 4000
iterations for three dipping layers with different
dip and same direction

~ 3000 @ First layer
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£ 2.00 n " .
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2~ iA“
- ‘A‘
g 1.501 .
3 100 T T T 1
1.00 1.50 2,00 2.50 3.00

Desired velocity (km sec )

Fig. 12: Desired velocity vs. calculated velocity for three
dipping layers with different dip and same
direction
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Fig. 13: Desired dip vs. calculated dip for three dipping
layers with different dip and same direction

for the inputs that have been excluded from training
procedure. The average error value for estimating dips for
unknown input patterns 1s -0.11309 degrees which again
1t does not depend to the number of layers.
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Two dipping layers with the same dips and different
direction: The last approach considers two dipping layers
with the same dip but in different direction. In this model
the velecity of first layer is constant (1.5 km sec™) and
the velocity of second layer is varying between 1.60 and
1.96 km sec™". The depths are between 0.30 and 5.30 km.
The dips vary between 2 and ® degrees. For this
geological section with such properties we calculated
572 data sets with different velocities, depths and dips.
The CMP gathers have been provided for these
572 samples with 0.1 km receiver separation for
12 geophone position according to source location. The
maximum x-coordinate is 15 km. The travel times can be
computed for each receiver position for different models.
After computing travel times for 572 examples (using CMP
gather) it 1s time to build the neural network structure. The
feed-forward Neural network consists of three layers
(input, output and hidden layers). The input layer has
24 neurons (12 traces for each layer), the output layer
has 4 neurons (velocity and dip values for two layers)
and the hidden layer consists of 12 newons. In this
example the weights or connection between neurons is
(24x12) + (12x4) = 336 connection between the different
layers of neural network For tlis network we need
approximately 672 data (504 data for training and 168 data
for testing and generalization).

After constructing the ANN structure we trained our
network with quasi-Newton traming algorithm for 506
examples. The velocities are normalized to 2 km sec™ and
the dips to 8 degrees. After 4000
performance function received down to 1.00663e-006
which 1s the same as our goal. The performance function
is presented in (Fig. 14). The plot of desired velocity vs.
calculated velocity 1s presented in (Fig. 15). The results of
generalization of ANN for the same data for different dip
values are presented mn (Fig. 16). The dip value has been
calculated so well for the inputs that have been excluded
from training procedure. The average dip error is -0.00977
and 0.007096 for first and second layer, respectively.
As the maximum offset with 0.1 km geophone separation
is 1.2 km for 12 traces, therefore the error value in depth
calculation for this offset is 0.0001486 km or 0.14 m.

iterations the

Comparison to inversion algorithm: In order to asses the
capability of the ANN methodology to conventional
inversion analysis, the case of three dipping layers with
different dips and same directions as described in
pervious section was compared to the results of
RAYINVR program (Zelt, 1993). The comparison results
described in (Fig. 17, 18) indicated that both the velocity
and dip errors associated with RAYINVR program were
significantly higher than those of ANN when the number
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Fig. 14: The performance function of ANN after 4000
tterations for two dipping layers
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Fig. 16: Desired dip vs. calculated dip for 77 unknown
examples for two dipping layers

of rays is not sufficient. Furthermore, the comparison
showed that the errors of both velocity and dip increased
with depth of the earth model. In other words, the highest
errors were associated with the deepest layers of the
sample earth model. However, the considerable increase
of errors with depth of layers as calculated for RAYINVR
program results was found to be far greater than that of
ANN results. Accordingly it could be concluded that the
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large number of data included in the traming process of
ANN provides a good correlation between the mput and
output data even for small number of rays (for example 8
traces for each layer), whereas the RAYINVR program
requires a more accurate primary model obtained with ray
tracing method m order to lead to better results.

CONCLUSION

After these different approaches it 1s obvious that the
well trained neural networks not only can compute the
right outputs for different input patterns but also can
predict the right output pattems for mputs which were not
included m traiming procedure. In more complicated cases
such as dipping layers especially layers with different
dips the neural network successfully predict reliable
outputs for new as well as old values. These all synthetic
models show that mversion of seismic data can be done
for dipping reflectors with the use of ANN approach. Of
course these results have been concluded from synthetic
data and have to be venified using real seismic data. The
real seismic data should cover the characteristics of these

different synthetic models. A more reliable judgment on
the applicability of neural networks to mversion of
seismic data 1s expected that upon carrying out this part
of the study where real field data 1s to be employed.

It 13 better to use different velocity gradients instead
of constant interval velocity values for each layer.
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