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Abstract: This study reports a study on the process modelling of ultrafiltration (UF) units with a focus on the
development of backwashing models based on properly designed experiments under pilot scale conditions. For
the modelling, series of experiments were designed using a star- 2° (fractional) factorial design methods and
performed with the so-called SMART-XIGA pilot plant provided by Norit Membrane Technology, a key player
in the membrane manufacturing. The influential factors on both the Hydraulic Backwash (HB) and Chemically
Enhanced Backwash (CEB) are considered as variables in the resulting second-order regression models. The
development and cross-validation of the models is solely based on the results obtained from the properly
designed experiments. Explanation of the interactions among the considered factors was investigated via
graphical and eigenvalue analysis using Response Surface Methodology (RSM) approach of empirical
modelling. The results show that, a change m transmembrane pressure m HB is largely dependent on the
baclwash time and backwash frequency with baclkwash flux having no effect. Reversibility of the fouled layer
in CEB is greatly dependent on the coagulant concentration dosing and the filtration flux and not so much on
the filtration time. Also, the cross-validation and the ANOVA analysis carried out show that the models are
valid in the region of our nominal working points.
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INTRODUCTION

Separation and purification processes  using
membrane technology are gaimng popularity in many
chemical and food processing as well as in wastewater
treating industries. The technology offers several
advantages over and above the traditional techmiques,
including low energy requirement and low temperature
operation (Sulaiman et af., 2001). The membrane
separation and filtration processes, comprises a
continuum of processes designed to separate particles or
solute of different sizes by utilization of membranes
contaimng appropriately sized pores (Ohya, 1976). The
processes are Microfiltration (MF), Ultrafiltration (UF),
Nanofiltration (NF) and Reverse Osmosis (RO) in order of
decreasing pore size. A membrane has the ability to
transport one component more readily than the other
because of differences in physical and/or chemical
properties between the membrane and the solute.
Transport through the membrane occurs as a result of a
driving force (pressure) and the permeation rate (flux),
which is proportional to the force.

Meanwhile, this study focuses on UF and its
applications in the treatment of water for irrigation
purposes using dead-end mode because of its relative low

energy consumption compared to the cross-flow mode
(Kennedy et al., 1998; Katsikaris et al., 2005). UF has a
pore size of about 0.01-0.1 um and thus prevents particles,
colloids, microorganisms and dissolved solids that are
larger in dimension than the pores m the membrane
surface from passing.

Ultrafiltration processes have been widely applied to
a variety of fields. More specifically, in the area of
industrial wastewater treatment, UF has been applied to
tannery wastewaters in order to recycle trivalent
chromium (Fabiani et al., 1996; Shaalan et al., 2001) or to
remove colour from tannery wastewaters (Alves and
De Pinho, 2000) in textile mdustry as a pre-treatment step
prior to NF or RO for recycling and reuse of textile
wastewaters (Marcucci et al., 2001) in olive-mill waster
waters i combination with centrifugation for the
reduction of organic polluting compounds (Turano ef af,
2002) and even in the artificial kidney mechanisms
(Serra et al., 1998). Therefore, the great extent of the UF in
industrial operations generates the need of a useful tool
for determnation of membrane performance and mdeed
the minimization of the operating costs.

Membrane fouling and scaling, a major problem in
membrane technology-based processes, affects the
performance of the process and eventually damage the
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membranes. This hampers the economic viability for the
development and spreading of the process (Reith and
Birkenhead, 1998; Alonso ef al., 2001). In
clarification/filtration  operations,  deposits  from
fouling create an additional resistance to mass transfer
(Serra et al., 1998). Fouling decrease would increase
permeate flux and so proportionally reduce plant size
and/or operating costs. However, fouling decrease
depends on the method of removal such as backwashing,
backflushing and so on. Therefore, there is a need to
better understand UF process i term of the fouling
mechamsm and backwash effectiveness as it 1s presented
in this paper. Accurate backwash modelling and
optimization is very paramount to achieving greater
backwash effectiveness. Thus reducing fouling.

Backwashing can either be Hydraulic Backwashing
(HB) or Chemically Enhanced Backwashing (CEB)
(Cheryan, 1998). During baclkwash, permeate flows back
through the membrane, lifts off the cake and flushes 1t out
of the module in dead-end mode. Each operating cycle 1s
thus made up of a filtration phase followed by a backwash
phase that allows the membrane to recover its initial
properties. Meanwhile, this method of reversing the
membrane properties Chydraulic backwash) does not lead
to 100% recovery due to availability of some particles
embedded within the membrane pores and fibres. To
remove this, another form of backwash called Chemically
Enhanced Backwash (CEB) is needed. Therefore, the
effectiveness of cleaning procedures (HB and CEB) plays
an important role in the performance of membranes
(Heyman et al., 2007). However, these procedures require
a break in the production process, use of chemicals and
consumption of part of the permeate produced, thus
reducing the productivity of the process and increasing
the total operating costs with additional chemical costs,
energy costs and waste water disposal costs.

Therefore to maximize productivity and minimize
operating costs in UF, it is necessary to optimize the
backwash process. However, optimizing this process
depends on availability of accurate models that waill
adequately explain the inter-relationships/interactions
among the influencing factors. However, some models
have been developed for membrane filtration explamning
the mechamsms of fouling especially ultrafiltration
(Taffin ez al., 1997; Gawrdix et al., 2004; Heijman et al.,
2007). Even Roling (2005) came up with a model which
tries to measure the efficiency of CEB considering
coagulant concentration dosmng, filtration flux and the
filtration time in a chemically enhance backwash.
Meanwhile, the model is very cumbersome and will require
a lot of time for model update as this s necessary since
water quality changes periodically.

Nevertheless, studies by Kennedy et al. (1998),
Kemnedy (2006) and Roling (2005) resulted mto
identifying coagulant concentration dosing, CEB
frequency, filtration time, filtration flux, soak tine and
backwash flux as factors influencing both hydraulic
backwashing and chemically enhanced backwashing.
Using physical modeling approach, a good starting
point in studymg the dynamic and thus optimizing a UF,
to formulate an accurate backwash model has a
disadvantage of many unknowns which invariably make
such models complex. Consequently, the objective of this
paper 1s to provide a methodology to find appropriate
backwash models for further insight and optimization of
the process. The methodology described in this paper
employed empirical modeling approach (Box and Draper,
1987) which makes use of the experimental data with the
accommodation of process data in the model if available

and the need be.
EXPERIMENTAL DESIGN

This study employed (fractional) factorial designs for
the experiments. These designs were adopted because of
their relative goodness, as explained by Box and Hunter
(Box and Hunter, 1961). A two-level factorial design was
used for HB while thus was extended to a star two-level
fractional factorial design for (CEB). The use of the more
advanced design for CEB was to reduce the number of
experimental runs while still keeping a good coverage of
the region around the nominal settings.

MATERIALS AND METHODS

The experiments were performed using SMART-
XIGA pilot plant provided by Norit Membrane
Technology, Enscede, The Netherlands (Fig. 1 for the
process flow diagram of the plant and Fig. 4 for the
photograph of the experimental set-up) containing an 8-
inch polyether sulfone (PES) UF membrane module. The
PES is a capillary hollow fibre type with an effective
length of 25 cm and membrane area 0.0754 m® with a total
of 120 fibres. The membrane, which is capable of inside-
out filtration, was operated in dead-end mode. Chemicals
used for CEB were NaOH solution of pH = 12.3 and HC of
pH = 2.3. The coagulant was an acidified solution of FeCl,
prepared from a concentrated solution of FeCl, containing
14 wt% of Fe’. The coagulation pump (WATSON
MARLOW 323) was calibrated experimentally to
accommodate the desired flow for the in-line coagulation
according to the experimental design for the CEB.

For hydraulic backwash, nine experimental runs were
performed and the change i TMP (ATMP) in bar was
estimated from:
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Fig. 1: The process flow diagram of the smart XIGA UF pilot plant. AV = Automatic valve, FT = Flow transmitter,
TT = Temperature transmitter, P-10-01 = Feed pump, P-20-01 = Backwash pump, P-40-01 = Coagulation pump,
CEB-1 = Tank containing diluted hydrochloric acid and CEB-2 = Tank containing NaOH solution

ATMP = TMP, — TMP, 1)

Where:

TMP; = Final transmembrane pressure at the end of
filtration, i.e., at T;= 20 min,

TMP, = Transmembrane pressure of the membrane at the
commencement of the filtration.

Furthermore, the following holds:

T,

t, = B—ff ~t, 2)
Where:
ty = Filtration cycle time (min),

T; = Total time for the filtration with time for hydraulic
backwash inclusive,

B; = Backwash frequency,

t, = Backwash time (min).

The experimental range and coded factors used in the
experimentation 1s presented in Table 1.

Reversibility of the fouling layer during CEB was
estimated according to Roorda (2004) using:

Table 1: Experimental range and coded levels of the three independent
variables for HB

Variables Actual Coded  Actual Coded Actual Coded
Backwash frequency 20 -1 3 0 4.0 +1
Backwash time (imin) 05 -1 1 0 1.5 +1
Backwash flux (Im™2h™")  150.0 -1 200 0 250.0 +1
R,,—R,)-(Rep — R,
R, = (R.. )~ (Rers )XIOO% (3)

b4

(Ru.—R,)

However, R;, was not easily determimed from the
experiments because the CEB rapidly starts immediately
after the completion of the specified nth filtration.
Therefore, based on the area observed, 100%
effectiveness of the hydraulic backwash was assumed.
The gradient of each filtration cycle (B,) was calculated
and averaged. The average value was used m the
prediction of R, using the following relationship:

Rh,n = Bav * thr Rh,n-l (4)

Where:
B, = Average gradient (bar min™") over n-1 cycles.

The raw water used in the experimentation was the
same as in the fullscale plant. Under the given
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experimental conditions the resistance measured was very
small to the extent that it was difficult to use the values in
the model formulation. However, according to Cheryan
(1998), resistance at a constant flux and viscosity can be
expressed as:

R— T™P (5)
L]
Where:
R = Resistance during filtration (m "),

J = Filtration flux I m*h™),
u = Viscosity (Ns m™).

If pand J are constant and setting TMP, ;e = TMP,
for n =10, substitution of Eq. 51in 3 gives:

_ (MR = TMPers) (6)
* (Tl\/ﬂ:’hCEB — TMPO)
Where:
TMPy eep Transmembrane pressure after the hydraulic
backwash before CEB commences (bar),
TMP s Transmembrane pressure after the CEB and

TMP g the transmembrane pressure before
the start of filtration (bar). Hence from (6)
and given the TMP profile, R, can be
calculated. Table 2 gives the experimental
range and coded factors used in CEB
experimentation.

Statistical analysis and modelling: For HB the proposed
mathematical relationship between the independent

variables and the response is given by:

ATMP = ATMP, + aut, + o, B, + & J, +o,t,” +

(M)
B+ ot ], + ot B+ o, B,
Where:
ATMP = Predicted response,
ATMP, = Intercept.
Furthermore, ... o, denote the regression

coefficients related to linear, quadratic and mteraction
terms.

For the CEB modelling, we propose the following
second-order polynomial equation:

R,=R_, +alt +o,t, +o,C +aJ’+ot’+ ®)

o, O+ Tt + ot CL 4 a T O, + o, Tt

Table 2: Experimental range and coded levels of the three independent
variables for CEB

Variables Actual Coded Actual Coded Actual Coded
Filtration flux

(Im>h) 20 . J3 00 120 1.3
Filtration tirme (min) 20 -5 625 0 120 3
Coagulant concentration

dosing (ppm) 0 -5 23 0 5 +3
Where:

R, = Predicted response,
R,, = Intercept,
al, ..., o,y = Regression coefficients.

Validation of the models: In order to determine the
accuracy of the models, additional experimental runs were
designed and performed at constant operating conditions.
Cross-validation and ANOVA analysis (Daniel, 1977)
were then carried out to further establish the valdity of
the models.

RESULTS

Modelling: The results obtained from the experunents
were analysed and the regression coefficients calculated
using ordinary least-squares estimation. As a result of
this the following regression equations (with standard
deviations of the estimated coefficients) are obtained

HB:

ATMP = -0.020— 0.512t, + 0.074B; — 0.015B, —0.104B,t,

(£0.032) (+0.472) (+0.023) (+0.004) (+0.149)
)
CEB:
R, =102.2+0.562], - 0.020t, - 31.75C.
(£10.60) (£0.150) (£0.086) (+4.815) 10)

~0.009J,> ~1.127C_* + 0.4911,C, — 0.002t,C,
(#0.009)  (£0.360)  (+0.042) (+0.046)

Equation 9 reveals that backwash flux (J,) has no
effect at all on ATMP and thus allowing a significant
model reduction when compared with Eq. 7. Furthermore,
taking into account the standard deviation of the
estimation errors, only B; has a pronounced effect on
ATMP. However, this may be different when the same
experimental design 1s performed under different process
conditions. Also, Hq. 10 excludes some terms, in particular
the term with the squared filtration time and the
interaction of the three influencing factors considered as
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Fig. 2: Response sutface (plus data points) and contour
plot for HE

Table 3: Ieasured and predicted ATWE from the HE experiments using
a 2° factorial design
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Fig 3: Besponse surface (plus data points) and contour
plot for CEE att, =62 5min

Table & Measured and predicted K, frorm the CER expeniments using a
fractional fictorial 2° +star desizn

3. No Jlm=h™h t, (Fain) Br AHTWE (bary  ATKP, (bar)
1 ] 0 ] 0054 005
2 -1 -1 -1 0 0&0 0.063
3 -1 -1 +] 0028 0.030
4 -1 +1 -1 0.050 0.051
5 -1 +1 + 0010 0.014
[ +] -1 -1 D085 0.083
7 +] -1 + 0031 0.031
3 +] +1 -1 0051 0.051
9 +] +] +] 0018 0.014
#: gea Table | for coded lewels

suggested in Eq. 8. Notice furthermore from Eq. 10 that the
effect of t; is questionable anyway. The IE regression
model has a Mean Square Brror (MSE) of 2475x1077,
while for the CEE regression model this was estimated to
be 3.812 These values are the lowest among alarge set of
pozsible model candidates, which are obtained by setting
one of tnore oo 80 Eq. 8tozero The measured responses
andthe model output responses obtained for HE and CEB
are presented in Table 3 and 4, respectively.

2ho Jr(dm=hh g (pmin) g (prm) Ba (3] R (%)
1 700 525 0.00 438 527
2 289 293 144 20.53 2510
3 200 62.5 2.50 4588 46,36
4 1200 625 2.50 %6.12 %6 .64
5 00 12048 2.50 3305 8305
& 989 957 106 5231 82.34
7 41.1 Q57 1.44 20.0% 8863
g 700 525 2.50 93.08 24.50
2 100 62.5 5.00 30.00 74.64

Graphical interpretation: Figure 2 show the response
sutface and contour plot for the HBE model Eq. 9 and
Fig. 3 shows it for the CEE model Eq 10, However, to
understand the rel ationship among the influencing factors
in CEE and given that t; has very little effect, the model
wag evaluated at a fized vaue of t; To allow aresponse
autface analysis of the fill model with three factors, which
cannot be done graphically, Eq. 10 is written in vector-
mattix notation,
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T I
R, =R, +LT|t |+[I-t. C.]JH]|t (11)
Ce C.
Wihere:
o, 0 Ey,
oLy 2
L=|e,|andH=|0 0 %
e By gy
2 2

Substititingthe estimated coefficients of Eg. 10 and
petforming eigenvalue decompodtion, ie, h= VDVT with
VT =VVT =1 (identity matrix) and D a diagonal matrix
gives:

[-0.203 0004 -0979
V= |0000 1 0004 | and
(0979 0 -0203
1178 0 0
D=| 0 0 0
0 0 0060

These matrices indicate the shape and otertation of
ellipsmidal cottowws CAbusam of al, 20010 for further
explanation of ellipsoidal analysid). Asa result of this
dominant directions on the resporse suface can be
found For instance, the first edgenvector (fivst colurn of
V1 with large cotresponding eigetrralue D, indicate a
clear valley, siore of less ali ghed withthe axis of J. Thisis
also confirmed by considering the third eigetrvector and
eigenvalue. Motice that, after equal scaling of the axis, this
wvalley iz also cleatly wisible in Fig 3. The second
eigenivector atd eigersvalue indicate that t does not
induce a ourvatur e in the response sutface.

In addition to this response suface analysis in
higher dimensions, itis also possible to estimate extrema
of the response swface, indicating optimal process
conditions. For the CER the optimum 15 given by

T
—H'I*L?=1EI4[EIJII196 semss —ooog (12

Cleatly, these steady state walues are wnrealistic and ot
of the applicability region. However, from Fig. 3 one can
reacily observe that approximately all linear combinations
of I and C. on the 100%-contowr give an appropriate
resaltin terms of B,

Fig &4 Picture of the SMWART-XIG & pilot plard wsed for
ex petitn ertati on

Tahble 5: Fesults of model validetion for & using again e 3 factorial

dedzn

S.Mo. Tlmk™"  tufmind B  ATMPbar) AT, (har)
1 ] i 0 0.036 0.054
2 +1 +1 +1 0022 0.014
3 +1 +1 -1 0.044 0.051
4 +1 -1 +1 0,050 0.020
5 -1 +1 +1 0.013 0.014
6 -1 +1 -1 0.015 0.051
7 -1 1 +1 0.032 0.020
8 +1 -1 -1 0.074 0.063
g -1 -1 -1 0,080 0.063
e

tcee Tablk 1for coded Bwels

Table 6: Femlt of model validdtion for CEER wwhg the complemend sy
fractiomalfactorial 2 design

S.Mo. T QmhTh ot c, B, (%] By (%)
1 411 957 1.06 92.50 94,17
2 930 W3 1.06 84 .37 83.70
3 411 03 1.44 9055 Q014
4 00 625 2.50 93 .92 94,50

Validation ofmodels: Table 5 andé present the results of
crossvalidation of the models. Table 3 shows that the
predicted ATME  agrees faitly withthe estimatedR, from
the experimental data (WISE 0.15) and thos confirming the
validity of the model Also, Table 6 shows that the
predicted reverability B, and the estimated F, ate in fair
agreenent, with MISE 5 8032,

It addition the ANOVA andvwsiz of the two models
preserted in Takle 7 and 8 shows F .= 1243 for HBE
model and F .= 16.24 for CEE while their wariance ratios
(VE) are 0.001856 and 0003278, respectively. Accordingto
Drariel (1977, since the W R walues for both models are
much more less that their respective F walues, then this
indicates that the models are reliable to explain the
relationships investigated with the propetly designed

3694



J. Applied Sci., 7 (23): 3687-3695, 2007

Table 7: ANOVA analysis for HB model

Table 9: Bounded-error estimation results for HB

Source of

variation S8 df(dp  MS Foge VR
Observation 8.89E-07 1 8.89E-07 18.63 3.278E-03
Error 0.99 0.94 4.789E-04

Table 8: ANOVA analysis for CEB model

Source of

variation 38 df (dy) MS Fooos VR
Observation 0.067 1 0.067 16.24 3.278E-03
Error 0.99 0.857 20.32

experiments. Hence, there is a clear indication that the
models are valid in the region of our nominal working
points.

DISCUSSION

Small data sets: Depending on the process conditions, an
individual experimental run can take several hours to more
than one day. Hence, effective experimental designs must
be chosen and thus usually small data sets are obtamed.
In our application on the influencing factors related to HB,
9 experimental runs (Table 1) were performed, while the
5 (Eq. 9.
Consequently, the error characteristics and especially the

mumber of regression coefficients is
auto-correlation of the residuals, are difficult to evaluate
and thus the standard deviations presented in Hq. 9 are
only rough indications. As an alternative to the stochastic
approach and most appropriate to small data sets, in the
past a so-called set-membership or bounded-error
approach has been proposed. In this approach it is
assumed that the measurement error i1s bounded, so that
effectively at each sample mstant only intervals are
considered instead of single pomts. For a full treatment of
thus approach we refer to e.g., (Walter, 2002; Norton, 2002;
Keesman, 2002). In particular, for the linear estimation
case exact solutions can be found. These exact solutions
can be tightly bounded by boxes, which can be found by
solving a couple of LP problems. Assuming an error
bound on ATMP of 0.005; the following bounded
(interval) estimates of the coefficients in Eq. 9 are found
and presented in the second row of Table 9.

If the error bound is chosen too small no feasible
solution will be found. Hence, there exists a minimum error
bound for which the interval estimates reduce to a single
point. This point estimate 1s called the min-max estunate.
For owr application, the min-max estimate of the
coefficients is presented in the third row of Table 9.
Notice that these mm-max estimates are not too far from
the least-squares estimates. The essence of thus bounded-
error approach is that now reliable uncertainty regions
around the estimates are found.

Similar results have been found for the CEB case, but
not presented here. Just notice that for the CEB model

ATMP, 0oty 0y o Oy
[-0.081 0.042] [-1.620.60] [0.028 0.119] [-0.023 -0.007] [-0.45 0.24]
-0.022 -0.518 0.076 -0.015 -0.114

only 11 experimental runs, using a fractional factorial +
star design, were performed while potentially for the
second-order regression model Eq. 8, 10 coefficients were
estimated. Consequently, 11 experimental runs are about
the minimum, resulting in relatively lugh estimation
errors. Nevertheless, the four cross-validation experiments
(Table 6) indicate that the resulting CEB model (10) is
reliable.

Prior physical knowledge: Notice from the contour plot
of Fig. 2 that the model predicts a small decrease of ATMP
when B; is smaller than 2.5. This is a rather unlikely
phenomenon. If there 1s sufficient evidence that the
maximum should be at B;= 2, then this information can be
easily incorporate into the empirical modelling approach.

CATMP

Setting =0

Br Bp=2

where the derivative can be easily found from Eq. 9, leads
to the following constraint between o, and o.; o, + 20, By
= 0, so that «, = -4;. Hence, after substitution of this
relationship, the model structure of Eq. 9 becomes:

ATMP = ATMP, +aut, + o, (—4B; + B,)) + o, t, B, (13)
in which the coefficients have to be re-estimated.

Hydraulic backwashing modelling: In Fig. 2 as the t,
increases, the ATMP linearly decreases. It can be
explained that the longer the time for backwashing, the
lower the change in the TMP. This shows a good removal
of the fouled layer. Meanwhile, it is expected that for
t, = 0, ATMP will become very high, indicating a
hyperbolic relationship. Notice, however, that the
experimental data (Table 3, 5) only support a linear
relationship. Therefore, most likely the relationship
between ATMP and t, 1s inverse proportionality.
However, this can only be verified through additional
experimental runs to get more data pomts beyond the
region considered in this study. Nevertheless, this is in
agreement with the findings of earlier research
(Roling, 2005; Kennedy et al., 1998, Kennedy, 2006;
Delgado et al., 2004).

Figure 2 also shows that as the backwash frequency
B; increases from 2 to 4, ATMP decreases quadratically
with increase of B. Tt can be explained that at low
frequencies, there 1s more formation of cake layer than can
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be removed with baclwash. But as the frequency
increases, the cake layer i1s washed off the membrane.
Thus restoring the original property of the membrane.
Therefore, the model shows that the higher the number of
frequency of hydraulic baclkwash, the lower the ATMP.
Thus the higher the rate of recovery of the flux.

Chemical enhanced backwashing modelling: First of all,
it is good to notice that 0 > R, > 100. Figure 3 describes
that the reversibility decreases non-linearly with an
increase in the coagulant concentration dosing but
increases non-limearly (almost linear) with an increase n
the filtration flux. The decrease with respect to increased
coagulant concentration dosing can be attributed to the
more deposited particles as a result of coagulation action
on the membrane. Thus providing more particles for
possible blockage of the pores which is in tune with
explanation of fouling mechamsm in the studies of
previous researchers Jaffin et of. (1997) and Gaurdix et al.
(2004). In addition to this, the increase of R, as aresult of
an increase in the filtration flux can be attributed to the
fewer blockages of the membrane pores by the
cake/coagulated particles as a result of high filtration flux.
Thus making CEB more effective.

CONCLUSIONS

In this study, models for hydraulic backwashing and
chemically enhanced backwashing have been developed
and cross validated using an empirical modelling
approach, in particular the Response Swrface
Methodology (RSM) (Box and Draper, 1987). The
modelling was based on experimental data from the
SMART-XIGA pilot plant, using modified factorial
designs to limit the number of experimental runs, with the
aim to study the full behaviour and the possibilities for
optimization of UF plants. Cross-validation and ANOVA
analysis led to the conclusion that the models are reliable
under the given experimental conditions. The models
showed that HB 15 largely influenced by backwash time
and backwash frequency with backwash flux having no
effect. The CEB depends largely on the coagulant
concentration dosing and the filtration flux and not so
much on the filtration time. For further implementation in
practice, due to changes in e.g., the feed water quality, a
regular update of the models 1s necessary and can be
easily obtained using the methodology presented in this
study.
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NOMENCLATURE
B; = Baclowash frequency.
C. = Coagulant concentration closing (ppm).
CEB = Chemically enhanced backwash.
HB = Hpydraulic backwash.
N = Backward flux (lm—=h™).
I = Filtration flux (Im ™~ h™).
MSE = Mean square error.
n = No. of filtration cycle before CEB.
R = Resistance of the membrane after CEB (m™").
Rz = Resistance after hydraulic backwash at the
end of n filtration cycle (m™).
R, = TInitial resistance of the membrane before
filtration (m™").

AR, = Resistance of fouling layer after UF of feed
water without cleaning (m™").

R, = Reversibility of the fouling layer as a
function of the cleaning procedure (%a).

t, = Backwash time (min).

ts = Filtration time (min).

TMp; = Transmembrane pressure at the end of the n
filtration cycle (bar).

TMPype = Transmembrane pressure after the hydraulic
backwash before CEB commences (bar).

TMP, = Initial TMP before UF (bar).

ATMP = Change in transmembrane pressure (bar).

o = Coefficient in second-order regression model

B.. = Average gradient (bar min ).

Tl = Dynamic viscosity (Nsm ).

SSTR = Treatment sum of squares.

VR = Variance ratio.

MSTR = Treatment mean squares.

SST = Total sum of squares.

SSE = Error sum of squares.

33 = Sum of squares.

MS = Mean squares.

d; = Degree of freedom.
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