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Abstract: Tn this study, thermal performance of solar air collector system which was experimentally constructed
was obtained for different operating conditions. Experiments were conducted under Turkey/Mersin climatic
conditions. Then, Neural Network (NN) models have been developed for the prediction the thermal performance
of solar air collectors. Experimental data were used for training and testing of the networks. The inputs of the
network are mlet and outlet air temperature to collector, solar radiation and air mass flow rate and the output
is thermal performance of solar air collector. Using the weights obtained from the trained network a new
formulation is presented for the calculation of the performance; the use of NN is proliferating with high speed
insimulation. The R*-values obtained when unknown data were used to the networks was 0.9985 which is very
satisfactory. The use of this new formulation, which can be employed with any programming language or
spreadsheet program for the estimation of the thermal performance of solar air collectors, as described in this
paper, may make the use of dedicated NN software urmecessary.
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INTRODUCTION

Twkey has an important potential for renewable
energy sources, especially solar energy. Solar energy can
be used mn the various applications (heating, cooling,
drying and power generation). The major component of
any solar energy system is the solar collector. Solar
collectors are special kind of heat exchangers that
transform solar radiation energy to internal energy of the
transport medium. This is a device which absorbs the
incoming solar radiation, converts it into heat and
transfers this heat to a fluid (usually air, water, or oil)
flowing through the collector. The solar energy thus
collected 1s carried from the circulating fluid either
directly to the hot water or space conditioning equipment
(Duffie and Beckman, 1991 ; Kalogirou, 2004a,b).

The air collector 1s used for heating awr m drymng
agricultural products and as an air heater in combination
with auxihiary heaters for air conditioning of buildings
(Karsli, 2007; Mittal and Varshney, 2006, Koyuncu, 2006;
Hegazy, 2000; Karim and Hawlader, 2004). Solar air
collector converts sunlight into heat extracted from the
collector by moving fluid. The useful thermal energy
delivered by the heater can be used for different
applications.

Thermal performance of the solar air collectors
depends on the material, shape, dimension and layout of

the collector. Thermal performance is low because of low
thermal capacity of air and low heat transfer coefficient
between the absorber plate and air. Performance
improvement can be achieved using diverse materials,
various shapes and different dimensions and layouts. The
modifications to improve the heat transfer coefficient
between the absorber plate and air include the use of an
absorber with fins attached, corrugated absorber, matrix
type absorber, with packed bed, with baffles and different
configurations are given in the literature (Kolb et al., 1999;
Esen, 2007, Karim and Hawlader, 2006; Ucar and
Tnalh, 2006).

In this study, the thermal performance of solar air
collector with corrugated absorber plate  was
experimentally investigated. Then, Neural Network (NIN)
models have been developed for the prediction the
thermal performance of solar air collectors. The thermal
performance of collector which is obtained experimentally
has been compared with thermal performance of collector
which 1s obtained from NN. In addition, m order to
calculate thermal performance of solar air collector, a new
formulation was derived.

THEORETICAL ANALYSIS OF AIR COLLECTOR

The efficiency of solar collectors 1s the ratio of useful
energy obtained in collector to solar radiation incoming to
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collector. Tt can be formulated as the following (Duffie and
Beckman, 1991; Ucar and Inally, 2006)

n=Q/AlL (1

The useful energy transferred to flind 1s:
Qu= AR (e -UL(TeT))] 2

The collector heat removal factor (Fy) is the ratio of
useful heat obtained in collector to total heat collected by
collector when the absorber surface temperature is equal
to fluid entire temperature on every pomt of the collector
surface.

_Mey r G uFyiag) 3
Fe=osl [1-¢ ] (3)

c— L

The collector overall heat loss coefficient (U,) is the
sum of top, bottom and edge heat loss coefficients and
can be written:

U, = U+ U, + U, )

The top heat loss coefficient (U):

-1

Ul Nl
C Tp’m - Ta hw
T,.| N+f (5)
G(Tp,m n Ta) (Tp,m2 n T,j)
1 2N+ f—1+0.133g,
+ —
(g, +0.00591Nh, ) g,
Where:

C = 520(1-0.000051 B2)(0°<P<70°) (6)

f =(1+0.086h, —0.1166h,&, {1+ 0.07866N)  (7)

h, = 5.7+3.8V (8)
o= 0.43[1 - ﬂ] @
p,m

N =No. of glass covers.
The bottom heat loss coefficient (U, ):

U, =% (10)
L

The edge heat loss coefficient (17,):

v, - UAk an
AE
(UA), = E PL, (12)

s

The collector efficiency factor (F') can be written:

P hh, +hU +hh +hh, (13)

(U,+h +h)(U,+h, +h )-h}

Where:

S(T + T, )(T,+T,)
h, = T 1 (14)
—+—-1

€ 5

The Nusselt number is needed for calculation of h,
and h, heat transfer coefficients in the air channel of solar
collector. The Nusselt numbers can be used as the

following equation for various Reynolds numbers (Ucar
and Tnalli, 2006)

100<Re<2100Nu = 0.344 Re"” (15)
2100<Re<2850Nu = 168107 Re*” (16)
2850<Re<5650Nu = 2.5510° Re'™ (17

5650<Re<100000 Nu=19.8107" Re"* (18)
MATERIALS AND METHODS

The experimental setup of solar air collector is shown
inFig. 1. The collector has 1., = 1.8 m length and W_ = 0.8
m width. Experimental measurements were done on days
18-31 May of 2005 (O zdemir, 2005). Sclar air collector was
positioned towards the south at an angle of 36° which
was optimum for this month in Mersin-Turkey (36.48°
latitude and 34.38° longitude). The detailed configuration
of corrugated plate 13 shown m Fig. 2. The detailed
specifications of the collector are shown in Table 1.

The measured variables in the experiment include
wnlet and outlet air temperatures, ambient temperature,
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Fan Adr duct

Fig. 1: Schematic view of the tested solar air collectors

Air entrance
section

Air exit section

Absorber plate

Transparent cover

Glass cover

-

‘. Insulation

Absorber

Fig. 2: Schematic view of absorber plate

humidity, air velocity. The collectors were instrumented
with T-type thermocouples for measuring temperatures of
the flowing air at the inlet and outlet of the collector and
ambient temperature. The thermocouple, which measured
the ambient temperature, was kept in a shelter to protect
the sensor from direct sunlight. Temperatures were
measured with accuracy of+2%. The air flow ratc was
calculated from the air velocity, measured by a hot wire
ancmomecter at the collector outlet and the known duct

arca. Air velocity values were measured with accuracy of
+1%. The range of the velocities mcasured by this
instrument is 0.3-35 m sec . The air relative humidity at
various points of the system was measured using
hygrometer with measuring range of 5-95% and accuracy
of £2%. All the sensors used in the collector lest were
continuously monitored and output signals were
recorded. The data acquisition system recorded the
necessary data cvery 15 min. Air was supplicd to the
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Table 1: The detailed specifications of the solar air collector
Absorber material Galvanized Sheet

Table 2: A sample of the data set used for the training of the network
(21.05.2005 date)

Plate type Corrugated Plate
Dimension of absorber plate  1.84x0.8m
Plate thickness 1 mm

Tl black paint
Glass wool (50 mm)
Glass wool (50 mm)

Absorber coating
Back Insulation
Side Insulation

Glazing Normal window glass (thickness 3.8 mm)
No. of glazing 1

Sealant Silicon rubber

Collector frame material Stainless steel (thickness 0.5 mm)
Collector slope 36°

system by fan. The hourly intensity of solar radiation on
the collector was measured locally. The collector slope
was adjusted to 36°, which was considered suitable for
the geographical location of Mersin.

NEURAL NETWORK MODEL

NN models represent a new method m system
prediction. Neural networks differ from traditional
simulation approaches in that they are trained to learn
solutions rather than bemg programmed to model a
specific problem n the normal way. A neural network
consists of a number of neurons, each of which network
there are three layers of neurons, 1.e., input layer which
recewves nput from the outside world, hidden layer or
layers which receive inputs from the input layer neurons
and the output layer which receives inputs from the
hidden layers and passes its output to the outside world
and in some cases back to the preceding layers. The
strength of the network les m the intercommections
between the neurons which are modified during traimng.
The training is done by exposing the network to a specific
data set of information and by applying a tramning
algorithm to enable the network to produce the desired
output (Fu, 1994; Tsoukalas and Uhrig, 1996; Lin and Lee,
1996, Kalogirou, 1999a, b; Kalogirou, 2000a, b, ¢). In
recent years, studies on applications of NN in energy
systems were carried out by a number of researchers
(Kalogirou and Bojic, 2000; Kalogiwou, 2004a;
Kalogirou, 1999, Kalogirou, 2006; Kalogirou ef al., 1999a;
Sencan et al., 2006, Sencan, 2006, Sencan, 2007
Sencan and Kalogirou, 2005).

In this study, a new formulation based on NN model
is presented for obtaining thermal performance of solar air
collector. In study, the back-propagation learming
algorithm 1s used m a feed-forward, single hidden layer
network. Logistic sigmoid transfer function is used as the
activation function for both the hidden layer and the
output layer. The transfer function used 1s presented in
Eq. 19. The values of the training and test data were
normalized to a range of 0 to 1. Levenberg-Marquardt
(LM) Back-Propagation traming was repeatedly applied
until satisfactory training is achieved.

Inlet air Outlet air

temperature temperature Solar Air mass Thermal

to collector  to collector radiation  flow rate performance

T, T, 1 0 n
Time __ (°C) (°C) (W) (kg sec™)) (%0
11:30 29.6 53.0 58319.4 0.070 2.82
12:00 30.0 53.4 65778.8. 0.068 2.44
12:30 30.8 57.7 65778.8 0.069 2.83
13:00 28.9 49.7 752727 0.069 1.91
13:30 31.1 58.3 752727 0.060 2.20
14:00 323 58.3 69847.6 0.065 2.44
14:30 31.1 57.5 69847.6 0.053 2.00
15:00 327 55.5 56285.0 0.064 2.62
15:30 30.4 47.3 56285.0 0.060 1.83
16:00 31.5 46.2 42044.2 0.070 2.46
16:30 20.2 38.0 42044.2 0.065 1.37
17:00 28.9 35.2 25090.9 0.069 1.75
17:30 28.1 30.8 25090.9 0.078 0.85

Fig. 3: NN model used for thermal performance prediction

1 (19)

F(z)=
@ 1+e7*

Where:
z = The weighted sum of the input.

The computer program was performed under
MATLAB environment using the neural network toolbox.
The data used for the training, testing and validation of
the neural network were obtained from experiments which
was done at different weather conditions of Mersin for
2005 year. A sample of the data set used for the traming
of the network 1s shown in Table 2. The data set for the
performance prediction of solar air collector available
included 188 data pattermns. From these 152 data pattemns
were used for the traimng of the network and the
remaining 36 patterns were randomly selected and used as
test data set.

Figure 3 shows the architecture of the NN used for
the performance prediction of solar air collector. In this
network, inlet and outlet air temperature to solar air
collector, solar radiation and air mass flow rate are the
input data and thermal performance of solar air collector
1s the actual output. The configuration 4-7-1 appeared to
be most optimal topology for this application.

The decrease of the Mean Square Error (MSE) during
the training process is shown in Fig 4. The regression
curve of the output variable (thermal performance) for the
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Fig. 4: Variation of mean square error with training epochs
for thermal performance of solar air collector
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Fig. 5. Comparison of experimental and NN-predicted
values of thermal performance of solar air collector
for the test data set

test data set 1s shown n Fig 5. It should be noted that
these data were completely unknown to the network. The
coefficient of multiple determination (R’-value) obtained
18 0.9985 which is very satisfactory.

RESULTS AND DISCUSSION

The objective of this study was to prove whether NN
can be used for the prediction of solar air collector thermal
performance. In order to calculate the thermal performance
of solar air collector, mathematical formulations by helping
this model are derived from the resulting weights and the
activation functions used m the NN. As the results
obtained from both the training and testing of the NNs
were extremely good in both cases it is believed that the
results thus obtained would be accurate.

Mathematical formulations derived from the NN
model are presented here. The best approach, which has
mimmum errors is, performed the LM algorithm with 7
neurons. In order to calculate the thermal performance of
solar air collector, the following equations are derived:

Table 3: Weight coefficients and bias values used for the determination of
the thermal performance

Neuron

position

(W) L (T L (T) LD L {m) by

1 0.83445 -1.7187 1.49380 -12.2903 -2.1976
2 -1.2377 2.5730 -2.49830 17.5107 1.7328
3 -7.4176 -26.9842 41.71800 -218.4942  -16.6533
4 16.2787 -33.5867 -0.19007 -15.3285 -0.9123
5 -3.6541 7.3320 0.037911 -11.2391 4.4925
6 55.8105 -30.0595 58.72860 -68.0250  -20.4646
7 -1.6929 2.8910 -7.50390 13.4746 -4.2537

Note: In weights n represents input number and i represent hidden neuron
number

Table 4: Normalization coefficients for the input parameters

Input parameter Coefficient
Inlet air temperature to collector (T;) 40

Outlet air temperature to collector (T,) 30

Solar radiation (T) 83000

Air mass flow rate (m) 1

Output parameter

Thermal performance of collector (1) 20

Note: The actual values are divided with the above coefficients to obtain the
normalized values

4
E =3Lw, +b, (20)
n=1
_ 1 (21)
olte ™

In the above equations for F, the first two values are
the multiplication of the input parameters (1) with their
weights at location n and the last constant value (b))
represents the bias term. The subscript i represents
number of hidden neuron. The four input parameters are:

I, = Inlet air temperature to collector (T;)
I, = Outlet air temperature to collector (T,)
I, = Solar radiation (T)

L

Air mass flow rate (m)

In the NN seven hidden neurons are used, thus
seven pairs of equations, ie., E to E; and F, to F, are
required, which represent the summation and activation
hidden layer,
respectively. The coefficients of Eq. 15 are given in
Table 3.

Additionally, the actual mput data of the various
parameters need to be normalized in the range of [0 to 1].
For this purpose the actual values of each parameter are
divided with the coefficients shown in Table 4.

Finally, the thermal performance of solar air collector
depending on inlet and outlet air temperature to collector,
solar radiation and air mass flow rate values can be
computed from:

functions of each neuron of the
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E, = F,*(-67.9276 +F,*(-20.6039)+F,*(6.5086)

Table 5: Comparison of the experimental and NN results for the thermal
performance at 18.05.2005 date

J. Applied Sci., 7 (23): 3721-3728, 2007

+F,*(-16.2211) +F,*(74.9805)+
F,*(-6.9735) +F,*(60.5512) - 46.5051

1
= — |20
1 [1+eEﬁj

(23)

The coefficient shown in Eq. 23 is used to convert
the normalized output to actual output (1) of solar air
collector.

In Table 5-11, comparisons for thermal performance
of solar air collector between the NN-predicted results and
the experimental values for different days of May month
are presented. As can be seen in these figures, thermal
performance values obtained from the NN method are

Experimental Predicted Table 8: Comparison of the experimental and NN results for the thermal
thermal thermal performance at 21.05.2005 date
Time performance (%) performance (%) Error Experimental Predicted
12:00 3.97 3.9672 0.0028 thermal thermal
12:30 3.17 3.1729 -0.0029 Time performance (%6) performance (%5) Error
13:00 2.96 2.9721 -0.0121 11:30 2.82 2.8354 -0.0154
13:30 2.85 2.8474 0.0026 12:00 244 2.4399 0.0001
14:00 2.94 2.9420 -0.0020 12:30 2.83 2.8458 -0.0158
14:30 273 2.7269 0.0031 13:00 1.91 1.9273 -0.0173
15:00 3.56 3.5639 -0.0039 13:30 2.20 2.1867 0.0133
15:30 317 3.1745 -0.0045 14:00 2.44 2.4386 0.0014
16:00 4.52 4.5195 0.0005 14:30 2.00 2.0369 -0.0369
16:30 4.44 44364 0.0036 15:00 2.62 2.6187 0.0013
17:00 5.91 5.7009 0.2001 15:30 1.83 1.8259 0.0041
16:00 2.46 2.4629 -0.0029
Table 6: Comparison of the experimental and NN results for the thermal 16:30 137 1.3879 -0.0179
performance at 19.05.2005 date 17:00 L75 1.7442 0.0058
Experimental Predicted 17:30 0.85 0.8513 -0.0013
thermal thermal
Time performance (%) performance (%) Error Table 9: Comparison of the experimental and NN results for the thermmal
09:00 347 3.4753 -0.0053 performance at 22.05.2005 date
09:15 276 2.7635 -0.0035 Experimental Predicted
09:30 3.39 3.3969 -0.0069 _ thermal thermal
09:45 377 3.7730 -0.0039 Time performance (%) performance (%0) Error
10:00 3.65 3.6475 0.0025 13:00 1.70 1.7001 -0.0001
10:15 3.72 3.7176 0.0024 13:15 249 2.4970 -0.0070
10:30 311 3.1064 0.0036 13:30 247 2.4630 0.0070
11:00 3.30 3.2970 0.0030 14:00 2.89 2.8672 0.0228
11:30 3.30 32053 0.0047 14:30 2.95 2.9390 0.0110
11:45 3.55 3 5507 _0.0007 14:45 3.03 3.0280 0.0020
12:00 3.00 3.0030 -0.0030 15:00 3.25 3.2317 0.0183
12:15 327 3.9702 -0.0002 15:15 3.20 3.1834 0.0166
12:30 332 3.9700 0.0500 15:30 2.98 3.0009 -0.0209
12:45 3.08 3.0810 -0.0010 15:45 301 3.0112 -0.0012
13:00 3.07 3.0744 -0.0044 16:00 2.53 2.5514 -0.0214
16:15 1.73 1.7277 0.0023
16:30 1.06 1.0595 0.0005

Table 7: Comparison of the experimental and NN results for the themmal
performance at 20.05.2005 date

Table 10: Comparison of the experimental and WN results for the thermal
performance at 24.05.2005 date

Experimental Predicted

thermal thermal
Time performance (%0) performance (%) Error
13:45 2.62 2.6103 0.0097
14:00 2.86 2.8804 -0.0204
14:15 341 3.4298 -0.0198
14:30 271 2.7262 -0.0162
14:45 3.15 3.1567 -0.0067
15:00 3.81 3.8133 -0.0033
15:15 342 3.4046 0.0154
15:30 3.10 3.0874 0.0126
15:45 2.59 2.6030 -0.0130
16:00 4.99 4.9657 0.0243
16:15 4.90 4.9229 -0.0229
16:30 4.17 4.1670 0.0030
16:45 4.10 4.1178 -0.0178
17:00 3.48 3.4768 0.0032

Experimental Predicted

thermal thermal
Time performance (%) performance (%0) Error
09:00 1.31 1.3758 -0.0658
09:30 1.7 1.7026 -0.0026
10:00 2.01 2.0246 -0.0146
10:30 2.24 2.2305 0.0095
11:00 219 2.1939 -0.0039
11:30 2.09 2.0918 -0.0018
12:00 2.77 2.7836 -0.0136
12:30 2.68 2.6681 0.0119
13:00 219 2.1865 0.0035
13:30 1.05 1.0406 0.0094
14:00 0.7 0.7036 -0.0036
14:15 0.62 0.6157 0.0043
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Table 11: Comparison of the experimental and NN results for the thermal
performance at 31.05.2005 date

Experimental Predicted

thermal thermal
Time performance (%0) performance (%) Error
12:30 3.56 3.5575 0.0025
13:00 6.88 6.8436 0.0364
13:30 6.54 6.5626 -0.0226
14:00 4.75 4.7128 0.0372
14:30 510 5.1072 -0.0072
15:00 3.07 3.0862 -0.0162
15:30 3.39 3.3927 -0.0027
16:00 4.73 4.7423 -0.0123
16:30 3.73 3.7451 -0.0151
17:00 5.28 5.2762 0.0038
17:30 2.07 2.0718 -0.0018
17:45 1.31 1.3047 0.0053

very close to the experimental values. In Table 5-11, the
differences between experimental and NN results are
maximum 0.2091, 0.05, 0.0243,0.0179, 0.0228, 0.0658 and
0.0372, respectively. In these tables, thermal performance
values slightly differ from because of cloudy of air and
wind velocity in the some time.

CONCLUSIONS

In this study, NN 1s used as a new approach for the
determination of thermal performance of solar air collector.
Expenmental data were used for traimng and testing of the
networks. The NN is successfully applied to determine of
thermal performances of solar air collector. The R value
is about 0.9985, which can be considered as very
satisfactory. In study, in order to calculate the thermal
performance values, mathematical formulations were
derived from the NN model. Mathematical formulations
have been obtained from formulations of the summation
and activation functions used in the NN model and
weights of neurons. The thermal performance of solar air
collector with use of this new formulation can be
estimated simply and quickly. The advantages of the NN
method are the faster, sumpler solutions and the avoidance
of the need to perform long series of collector
performance tests. Also this methed can be applied to
determine thermal performance of different collector types
and different applications m the energy systems. Thus the
performance analysis of solar collectors can be simplified.
Accuracy and usefulness of NN method can be mcreased
with more data.

NOMENCLATURE
A. = Collector surface area (m?).
G, Specific heat of air (J/kg K).
E, = Summation function of neuron 1.
F, = Activation function of neuron 1.
F, = Collector heat removal factor.

FF
k
L
Le
m
h,

Lo TE < g

S o™
2
g

woH o on R

Collector efficiency factor.

Thermal conductivity of insulator (W/m K).
Thickness of the insulator (m).

Collector length (m).

Mass flow rate (kg sec™).

Heat convection coefficient between the glass
cover and air (W/m’ K).

Heat convection coefficient
absorber plate and air (W/m” K.
Radiation coefficient between the awr-duct
surfaces (W/m? K).

Heat convection coefficient
msulation and ambient (W/m® K).
Heat convection coefficient for air flowing over
the outside surface of the glass cover (W/m® K).
Total solar radiation incident on collectar (W/m?).
No. of glass cover.

Nusselt number.

Collector useful energy (W).

Reynolds number.

Temperature (K).

The bottom heat loss coefficient (W/m’ K).

The edge heat loss coefficient (W/m’ K).

The collector
(W m?K).

The top heat loss coefficient (W/m® K.
Wind velecity (m sec™").

Collector width (mm).

Collector efficiency.

Emissivity of the glass cover.
Emissivity of the absorbing plate.
Collectors tilt (degree).

Density of air (kg m™).

between the

between the

overall heat loss coefficient

= Effective transmission.

Stefan Boltzmann constant =2.04x1077 (kI s m™*
K.

SUBSCRIPTS

Ambient

Fluid

Inlet

Outlet
Absorbing plate
Radiation

Sun
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