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Abstract: This study investigates the 1ssue of improving the discriminative traimng capabilities in Hidden
Markov Model (HMM) 1solated word recognition task. Hence for, two optimization criterions in the traming
phase are focused; the minimization of recognition Word Error Rate (WER) according to the Baum-Welch based
Maximum Likelthood Linear Estimation (MLE) and the Maximum Likelihood Linear Regression (MLLR)
adaptation traimng criterion. For this purpose, the Statistical Leaming Theory (SLT) and the MLLR adaptation
are applied in order to analyze, in the sense of minimum word error rate, the consistency of the training estimator
in clean and mismatched environmental conditions. Several experiments were carried out. They all aimed to find
an efficient training estimator algorithm with good generalization property and allowing a good training error
rate with a significant training data reduction. The obtained results show that it exists an optimal specified
training conditions which should be reached in order to guarantee an optimal discriminative training
characteristics of the HMM based isolated word recognition system.
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INTRODUCTION

Automatic Speech Recogmtion (ASR) 1s a pattemn
recognition problem. Statistical pattern recognition
techniques have been successfully applied to many
problems, including speech recognition. The majority of
current automatic speech recognition systems employ
statistical techniques to model speech (Ben-Yishai and
Burshtein, 2004). The Hidden Markov Model (HMM)
method is statistically based and its success has triggered
a renewed wge for a better understanding of the
traditional statistical pattern recognition approach to
speech recognition problems. The advent of powerful
computing devices and the success of Hidden Markov
Modeling released a renewed pursuit for more powerful
statistical methods to further reduce the recognition Word
Emror Rate (WER) and build more robust speech
recognition systems across various conditions. The
accuracy of state of the art recognition systems relies on
properly trained parameters with minimum training data
(Tong, 2001). That’s why a tremendous research work is
actually intended on finding new Discriminative Training
(DT) algorithms yielding to an increase of speech
recognition accuracies 1n clean and noisy environments.
Approaches to improve
confusable classes can be categorised in two ways. In the

discrimination  between

first category, discrimination 1s improved by operating the
recogmiser in a feature space in which the acoustic umts
of interest are inherently better separated. In a second
category, the problem of discrimination 1s addressed at
the model level by building better classifiers.
Discriminatively-trained hidden Markov models fall under
this category (Ben-Yishai and Burshtein, 2004; Juang and
Katagiri, 1992).

The present research s motivated by the following
observation, robust parameter estimates from insufficient
training data is a research topic itself, then we intended to
give an answer to the following question: how much
traiming data do we need to be able to construct a good
classifier? Of course, increasing the size of the database
nearly always results in a decrease of error rate. The
reason for this is that the more training data one has,
the more parameters one can afford to train and,
consequently, the more detailed the models can be.
Unfortunately, the use of much training data, will result
many drawbacks such that the increase of processing
time, or other logistic difficulties.

So, study, an
improvement, in the model training level, of the HMM
recognition system described by Frikha ef af. (2007). Our
major concern was basically oriented on studying the
efficiency of the traimng estimator by varying its capacity

we focused in this research
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represented by the size of data as well as the complexity
of the estimated function. So, we studied in this present
research:

¢ The application of the Statistical Learning Theory
(SLT) (Vapnik, 1999, Cherkassky and Malier, 1999,
Ganapathiraju, 2002), which is a new paradigm for
solving learming problems m, HMM speech
recognition applied to the isolated word task. Our
motivation of using such techmique 1s that SLT i1s
developed for small data samples and does not rely
on a priorl knowledge about the problem to be
solved, in contrast to the classical statistics
developed for large samples and based on using
various types of a priori information. Therefore, SLT
provides a new framework for the general learning
problem.

*  The implementation of the Maximum Likelihood
Linear Regression (MLLR) adaptation (Leggetter and
Woodland, 1995; Lee and Huo, 2000), which has
been recognized as an effective approach to
overcome the mismatch between the traming and
testing conditions. MLLR was a transformation-
based adaptation where the overall HMM were
transformed via the cluster-dependent linear
regression functions estimated by the Maxunum
Likelihood (ML) theory. Tn environmental adaptation,
we attempt to transform the acoustic features means
of a HMM so as to better match the characteristics of
some speech from a particular environment.

STATISTICAL SPEECH RECOGNITION OVERVIEW

A typical statistical speech-recognition system is
shown m Fig.1. The goal m a statistically-based speech
recogmtion system 1s to find the most likely word
sequence given the acoustic data. If O is the acoustic
evidence that 13 provided to the system and W = w,, ..., w,
is a sequence of words, then the recognition system must
choose a word string v that maximizes the probability
that the word string W was spoken given that the
acoustic data was observed (Rabiner, 1989):

W = arg max P (W|0) (1)

P(W|D) is kenown as the a posteriori probability since
1t represents the probability of occurrence of a sequence
of words after observing the acoustic signal. The above
approach to speech recogmition, where the word
hypothesis is chosen within a probabilistic framework, is
what makes most present recognizers statistical pattern
recognition systems.

Speech signal ”—*
Acoustic
font-end

L1

( Statistical acoustic models )
P(O[W)
.y
S

Recognized utierance

Fig. 1. Schematic overview of a statistical speech
recognition system

Tt is difficult to directly compute the maximization of
Eq. 1 since there are effectively an mfinite number of word
sequences for a given language from which the most
likely word sequence needs to be chosen. This problem
can be significantly simplified by applying a Bayesian
approach to find (Rabiner, 1989):

W = arg max P (O[W)xP(W) (2)

The probability P{(O|W), that the data was observed
if a word sequence was spoken 13 typically provided by
an acoustic model. The likelihood that gives the a priori
chances of the word sequence bemg spoken is
determined using a language model (Rabiner, 1989).
Probabilities for word sequences are generated as a
product of the acoustic and language model probabilities.

The process of combining these two probability
scores and sorting through all plausible hypotheses to
select the one with the maximum probability, or likelihood
score, is called decoding or search.

Statistical Acoustic Modeling: Hidden Markov Modeling
of Speech: In most current speech recognition systems,
the acoustic modeling components of the recogniser are
almost exclusively based on Hidden Markov Models
(HMM).

HMM provide a statistical framework for modeling
speech patterns using a Markov process that can be
represented as a state machine. The temporal evolution of
speech is modeled by an underlying Markov process
(Rabmer, 1989). Hidden Markov modeling 1s a powerful
statistical framework for time-varying quasi-stationary
process and a popular choice for statistical modeling of
speech signal.

(Given a speech utterance, let O = (0,, 0,.....0;) be a
feature vector sequence extracted from the speech
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waveform, where o, denotes a short-time acoustic vector
measurement. Further, consider a first-order N-state
Markov chain governed by a state transition probability
matrix A = [a;], where a; is the probability of making a
transition from state 1 to state j. Assume that at t = O the
state of the system g, 1s specified by an wutal state
probability m; = P(q, = 1). Then, for any state sequence
q = (> qz.....qr), the probability of q’s being generated by
the Markov chain is:

T
P(q ‘ A: TI:) = nq[l a’qlqz "'a'qT—qu :anﬂaqt—lqt (3)
t=1

Suppose the system, when at state g, puts out an
observation o, according to a distribution b,(o,) = P(o|q,),
q. = 1,2,......T. If we denote B the matrix containing the
probability distribution in each state, B=[b, |, where by, =
P(oyq, =j). Therefore, we can use the compact notation
A=(m, A, B)to fully define the HMM. The HMM used as
a distribution for the speech utterance can then be
defined as (Rabiner, 1989):

T
PO A= 70 [ Mo @y By (OF) (4)
w0 t=1

Where, b,(o,) defines the distribution for short-time
observations, this output probability distribution
represents the probability of observing an mput feature
vector n a given state g, At the core of the HMM 1s a
Bayes classifier where classification is done using a
simple likelihood ratio test. The output probability
distribution could be parametrized in several ways. The
most commoenly used form of the output for continuous
distribution is a multivariate Gaussian distribution.

Acoustic model estimation: The estimation of the
parameters of the HMM acoustic models plays a vital role
m the accuracy of the ASR system. A key to the
widespread use of HMM to model speech can be
attributed to the availability of efficient parameter
estimation procedures (Rabiner, 1989, Baum, 1972).
Maximum Likelihood Estimation (MLE) is one such
optimisation criterion (Dempster et al., 1977). The
motivation to use MLE comes from the probabilistic
definition of the speech recognition process which
attempts to find a word sequence which maximises a cost
(likelihood) function: we should be able to estimate the
model parameters Ay ; = A to maximise the probability of
the observation sequence given the model (Saul and
Ralim, 2002):

A=argmaxP(O| ) (3)

The Expectation-Maximisation (EM) algorithm
provides an iterative framework for MLE (Dempster et al.,
1977); given the structure of HMM and traimng data, the
algorithm finds the parameter values of the HMM
according to the maximum likelihood (ML) criterion

In the EM algorithm, an auxiliary function Q(a2) 1s
defined as:

QR 2)=3" P(Q] O,M)log[P(O,Q| 1)] (6)
Q

The EM algorithm iteratively estimates a new
parameter set i_, by computing an auxiliary function
Q(h,,%) based on an old parameter set i (E-step) and
then maximizing the auxiliary fimetion over A (M-step):

XnH:ﬂI'gmaXQ(Xn,X) (7)
P

The convergence of this iterative procedure to a
local maximum of the objective function is guaranteed
(Baum, 1972; Dempster et al., 1977).

A speech recognizer trained by the ML criterion
achieves good recognition rate only if training data are
sufficient to estimate model parameters reliably and the
modeling assumptions are correct. However, in reality,
speech 1s not produced by a hidden Markov process and
the traiming sample size i1s not large enough. In this
situation, traiming by maximum likelthood estimation may
not lead to the best possible model that maximizes the
recogmition rate (Juang et al, 1997). The maximum
recognition rate may be indirectly achieved by separating
different classes as much as possible.

STATISTICAL LEARNING THEORY

Supervised learning refers to learning from examples,
1n the form of mput-output pairs (x,y), by which a system
that 1sn’t programmed n advance can estimate an
unknown function and predict its values for mputs
outside the training set (Cherkassky and Malier, 1999,
Tong, 2001).

The central issue of statistical supervised learning
problem is presented as follows:

That’s have a set of measures D = {(x, y;) eR*x {0,1},
1 = 1,...,m} according to unknown jomted probability
distribution P (x,v). F is a set of functions such that
F = {f(x)/aeA}.
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Our main objective is to find f. ¢ F such that the
estimation ¥ = f,.(x) will be the best possible. The choice
of that function depends therefore on m training
data 11d according to the jomnt probability distribution
P(x,y) = P(x).P(v[x). In order to select the fimction £,. from
the given set of functions F, we need a loss function
L{f,(x).y) which corresponds to the loss caused by using
f,(x) to predict yv. The traditional loss fimction for
classification problems 1s (Vapnik, 1999):

0if y=f (x)= good classification (8)
l1if  y #f (x)= bad classification

L, (0y) = {

Here, o is the generalized parameter of functions.
Therefore, f,,» will correspond to the function which
minimizes the risk functional R{c) defined by Vapmk
(1999):

R(a) = [L(£, ().y)dP(x, y) ©)

In order to mimmise the risk functional given by
Eq. 8, for an unknown probability measure P(x,y). The
expected risk functional is replaced by the empirical risk
functional (or traming error) which 1s constructed on the
basis of the samples. This principle is called the Empirical
Risk Minimization (ERM). The empirical risk functional is
defined as (Vapnik, 1999).

R, (@)= R (o)= iz L, (xyy  (0)

Minimization of the above functional is one of the
most commonly used optimization procedures in machine
learmng. ERM 15 computationally simpler than attempting
to minimize the actual risk as defined in Eq. 10. Note that
according to the law of large numbers:

v, R(e)————R{w) (1)

This convergence is the main motivation for the
Empirical Risk Minimisation (ERM): one hope that the
funetion minimising the empirical risk (traiming error) will
also have a small risk; then the ERM principle 1s said to be
consistent.

Suppose we now receive a new set of data that does
not include any of the examples used previously. For a
machine that generalizes well, we should be able to predict
with a high degree of confidence that the empirical risk
obtained using this new data (or generalization error), will
also be small. However this 1s not sufficient to guarantee
a small generalization error. This phenomenon 1s called

“‘-..___-_-—-_—_
Optimal Complexity
complexity

Fig. 2: Underfitting and overfitting phenomena

overfitting (Fig. 2). To avoid it, we need to restrict the
class of functions on which the empirical error is
minimized in order to have some guarantee on the
efficiency of the algorithm.

This restriction to a prescribed set of functions called
the model can lead to underfitting, 1.e., to an estimator
which has high empirical and expected risks. Therefore, to
choose the adequate size (also called capacity or
complexity) of the model 15 a key issue to build
consistently efficient estimators. This implies that the
expected risk (generalization error) tends towards the
empirical risk. With this, we can guarantee both a small
empirical risk (traimng error) and good generalisation with
which we guarantee an ideal situation for a leaming
machine.

DISCRIMINATIVE ADAPTIVE TRAINING

Meaximum-likelihood pomt estimation 1s by far the
most prevailing training method. However, due to the
problems of unknown speech distributions, such as
sparse training data, high spectral and temporal variability
of speech signal and possible mismatch between traming
and testing conditions, a dynamic training strategy 1s
needed. To cope with the changing speakers and
speaking conditions in real operational conditions for
high-performance speech recogmtion, such paradigms
incorporate a small amount of speaker and environment
specific adaptation data into the training process.
Bayesian adaptive learning is an optimal way to combine
prior knowledge in an existing collection of general
models with a new set of condition-specific adaptation
data.
Maximum likelihood linear regression: Bayesian
adaptive learmng 1s an optimal way to combine prior
knowledge in an existing collection of general models with
anew set of condition-specific adaptation data. The most
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often used structure is through an affine transformation
such as finding linear regression transformation of the
mean vectors of the original HMM.

Maximum likelihood linear regression or MLLR
computes a set of transformations that will reduce the
mismatch between an initial model set and the adaptation
data. More specifically MLLR is a model adaptation
technique that estimates a set of linear transformations for
the mean and variance parameters of a Gaussian mixture
HMM system. The effect of these transformations is to
shift the component means and alter the variances in the
initial system so that each state in the HMM system is
more likely to generate the adaptation data.

The transformation matrix used to get a new estimate
of the adapted mean is given by Leggetter and Woodland
(1995):

i=Wg (12)
T
- 13
gf[w’}ll’ﬂz""’ﬂn} (13
Where:
W = N x(n+ 1) transformation matrix
n = The dimensionality of the data)
E = The extended mean vector and w represents a bias
offset
Hence, W can be decomposed into:
W=[bA] (14)
Where:
A = nxntransformation matrix
b = A bias vector

The transformation matrix W 1s obtained by solving
a maximisation problem using the FExpectation-
Maximisation (EM) technique (Bilmes, 1998). This
techmque 1s also used to compute the variance
transformation matrix. The use of EM algorithm results a
maximisation of a standard auxiliary function.

MLLR and regression classes: MLLLR makes use of a
regression class tree to group the Gaussians in the model
set, so that the set of transformations to be estimated can
be chosen according to the amount and type of
adaptation data that is available (Leggetter and
Woodland, 1995; Lee and Huo, 2000). The tying of each
transformation across a nmumber of mixture components
makes it possible to adapt distributions for which there
were no observations at all. With this process all models
can be adapted and the adaptation process is dynamically
refined when more adaptation data becomes available.

RESULTS

In all experiments we use the TIMIT database
(DARPA, 1990). This corpus was designed for traming
and testing contimuous speech recognition systems.
The HTK toolkit (Young et al., 2002) was adopted for this
study. The recogmtion system 1s a speaker independent
1solated word recognition system developed to recognize
10 isolated words extracted from sal and sa2 testing and
training corpus of TIMIT. The collected data was
preprocessed using 25 ms Hamming window and a 10 ms
frame period. Additionally, the data was preemphasized
with a facteur of 0.97 and liftered with a factor of 24. For
every frame we compute 12 Mel Frequency Cepstral
Coefficients (MFCC) (Davis and Mermelstein, 1980).
Those features were directly computed using standard
HTK parametrisation module. Each vocabulary word
was modeled by a five state left to right HMM with
contmuous Gaussian density associated to each state and
no skip transitions. The tramning procedure mvolved maitial
estimates for word models followed by a five iteration of
the Baum-Welch algorithm based on maximum likelihood
estimation criterion. Recognition was then carried out
using the Viterb: algorithm (Rabiner, 1989).

Series of experiments were conducted. They all aimed
to find the optimal training complexity of the recognition
system and this by searching the mimmum Traming Word
Error Rate (TWER) and Generalized Word Error Rate
(GWER) as well as the interval of confidence at 95%
(1C,4,) using Baum-Welch based MLE training criterion.
It should be noticed that, the interval of confidence at x%
from the recognition rate belongs to the mterval [P-, P+],
where (Barras, 1996):

2
P+Ai2x P(l'P)Jr Zx
2
pt = 2N NN
1+2x
With {ng% ~19s (15
Zoggmy, = 248
Where:
P = The measured recognition rate

N = The number of realised tests

z, = A constant; it depends on the mdex x which
indicates the percentage that the measured
recognition rate 15 within the
confidence

mterval of

There is a chance of x% that the accurate recognition
rate P is within that interval. For large values of N, Eq. 15
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may be further simplified and the recognition
measurement error will be limited at 95% of the cases for
example (Barras, 1996):

PP 1-96\/ P(;P) = 1Cos% (16

Experiment 1: For the first experiment, each acoustic
vector was composed with 12 static MFCC coefficients.
Each state was represented by a single multivariate
Gaussian density with diagonal covariance matrix. Tn order
to test the consistency of the traming algorithm, based on
MLE criterion, we gradually increase the Tramning Data
Size (TDS). The Tramning Word Error Rate (TWER),
generalisation word error rate (GWER) were measured and
the interval of confidence at 95% (IC,..,) was computed.

Table 1 shows the recognition performance measured
in terms of traiming and generalised word error rate as a
function of the size of traming data. We observe that
mcreasing the size of the traiming database will resultina
decrease in the TWER up to certain optimal training data
size (OTDS) of 2500 corresponding to a minimum word
error rate of around 2%. We notice the relatively poor
performance of the recogmtion system for small tramning
data. This result 1s reasonably explained by Fig. 3. In fact,
for small TDS, the recognition system 1s placed on the
underfitting zone and therefore can not learn efficiently
the model parameters. Above the OTDS, the recognition
system is placed on the overfitting region conditions and
1ts performance begins to fall down.

Experiment 2: The consistency of tramning algorithm
depends on the complexity (number of estimated HMM

Table 1: Effect of variation of number of training data in error rate and
confidence interval

TDS 100 500 1000 1500 2000 2500 3000
Training
TWER (%) 0.33 1.07 137 192 200 2.05 210
TC g5, 638  2.56 191 1.80 1.58 142 1.31
Test
GWER(%0) 533 482 371 232 211 207 2m
1C o5 1190 4.85 301 1.96  1.62 143 1.28
61 Training error  — — = Generalization etror
547 ~.
9 ~a
‘?g 41 ~. Optimal
34 data size
i ==
11 /
1] r r r r r
o] 500 1000 1500 2000 2500 3000
No. of iraining data

Fig. 3: Comsistency of the algorithm based on MLE
criterion

parameters) of its mathematical function. So, we studied
in this second experiment the performance of the
recognition system after varying its complexity by:

¢ TIncorporating the dynamic features (first and second
derivatives) to the static acoustic vectors.

¢ TIncreasing the number of multivariate Gaussian
mixtures of the acoustic models (HMM).

Investigation of the incorporation of the dynamic acoustic
features: The complexity is defined by the number of
trained parameters:

N, =10*G*N*2d (17
Where:
G = The number of Gaussian mixtures (G = 1 for
this experiment)
N =3 = The number of HMM emitting states and d is

the dimension of coefficients

To illustrate the behaviour of the recognition system
towards the increase of the complexity, we append the
MFCC acoustic static features by their log energy © E’
and first A © D’ and second AA © A’ order derivatives.
Table 2 indicates the dimension of various kinds of
acoustic features and Table 3 resumes the performance of

Table 2: Dimension of different representations

Acoustic features d

MFCC 12
MFCC 0 13
MFCC_0 D 26
MFCC 0D A 39

Table 3: Error rate and confidence interval when dynamic features appended

Parametrisation  MFCC MFCC 0 MFCC 0 D MFCC 0D A
Train
TWER (%) 2.05 1.84 1.10 1.02
ICssy, 1.42 1.35 1.06 1.02
Test
GWER (%) 2.07 2.01 1.12 1.20
IG5 143 1.41 1.07 1.06

23- ——— Training error wem  =m Gereralization error
. 2.14
£ 194 Optimal capacity
£ 1.74
e
) 1.5
H 1.3

1.14

0.9 T T T T |

4] 500 1000 1500 2000 2500
Complexity

Fig. 4. Effect of the incorporation of dynamic features on
the performance of the recognition system
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Table 4: FError rates and interval of confidence with different No. of Gaussian mixtures

Number of multi-Gaussians 1 4 8 16 32 64
Complexity 720.00 2880.00 5160.00 11520.00 23040.00 46080.00
Train

TWER (%) 2.05 1.47 1.20 0.86 0.66 0.44
1Cys0, 1.42 1.22 1.11 0.95 0.84 0.70
Test

GWER (%) 2.07 1.62 1.52 1.44 1.47 1.73
1Css, 1.43 1.24 1.24 1.20 1.22 1.28
Table 5: Error rate and confidence interval with different number of training data

TDS 100 500 1000 1500 2000 2500 3000
Train

TWER (%) 0.00 0.07 0.10 0.38 0.47 0.49 0.50
1Css, 3.70 0.89 0.70 0.67 0.63 0.57 0.52
Test

GWER (%) 6.00 3.09 1.80 0.71 0.50 0.42 0.41
ICss, 8.27 3.45 1.77 0.89 0.65 0.53 0.54

the recogmtion system in terms of traiming and
generalised word error rates as well as the interval of
confidence at 95%.

The obtained results are illustrated by the following
curves displayed in Fig. 4. As can be seen, the
incorporation of the time derivatives improved the
performance of the recognition system but unfortunately
at the price of an increase in complexity. This is in fact
predictable since the time derivatives inprove the ability
between certain classes of sounds and some the temporal
characteristics of speech signal (Furui, 1986).

From this experiment, the obtained Optimal
Complexity (OC) of the recogmtion system corresponds
to MFCC features appended by O order cepstral
coefficient and first derivative coefficients. We also
noticed the overfitting phenomena which appeared when
exceeding the OC value.

Investigation of the increase of multivariate Gaussian
mixtures: The recognition performance of the system 1s
experimented while increasing the number of Gaussian
mixtures in the output distribution (Table 4, Fig. 5).

As can be observed, the GWER decrease as the
training data size grows (by increasing the number of
Gaussian mixture per emitting state). A mmmmum GWER
value of 1.44 1s reached corresponding to an optimal
complexity OC of 16 multivariate Gaussian mixtures per
emitting state. The recogmition system 1s put under the
overfitting phenomenon after this optimal OC value.

Experiment 3: In this third experiment, we aimed to
conduct the recognition system i the optimal condition
obtained by the previous two experiments. So, the
MFCC 0 D front end 1s used and 16 multivaniate
Gaussian mixtures were taken for each emitting state.

We evaluated the performance of the recognition
system by gradually increasing the number of tramng
data (Table 5, Fig. 6).

——— Trainingerror = m * Generalization erroy -
-

20 imal capacity - -
- . -
£ 1.5 aum *
£ 10
8 os

0.0 T r r T 1

0 20000 40000 60000 80000 1006000
Complexity

Fig. 5: Effect of the increase of gaussian mixtures on the
performance of the recognition system

e Training error wmm = wm  Generalization error

6.0 1
5.51 \
5.0 1

\
N\
15]  emee——

0.0 T T 1
0 1000 2000 3000

No. of training data

Fig. 6: Consistence of the algorithm based on the MLE
criterion

Discussion: Optimal training data size OTDS of 2000 is
reached for a corresponding generalised word error rate
GWER of 0.5%. That means that a reduction of 500 in the
vocabulary of the training data is obtained in comparison
with results of the first experiment.
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Table 6:  Generalized word error rates and degradation for different values of

SNR
SNR. GWER (%0) Degradation (%0)
Clean 2.07 Hhk
20dB 10.66 859
15dB 19.52 17.45
10dB 23.28 21.21
5dB 27.57 25.50

Table 7: Generalized error rate and gain with different size of adaptation data
for different SNR values

TDS@dB) 50 150 350 650 1250 2500

Gainy,,, (%)

20 1339 11.79 987 925 803 7.87 2.79
15 1328 12.00 11.52 1093 933 9.17 10.35
10 1461 1312 1325 13.05 1228 10.93 12.35
5 1880 18.52 1819 1721 1710 16.69 16.88

Substantial reduction m word error rate of 2% 1s
obtained in comparison with the results of the first
experiment.

Experiment 4: The performance of automatic speech
recognition systems is highly sensitive to variations
between training and testing conditions. This experiment
tries to study the mfluence of the mismatch between
training and testing environment conditions. To do so, we
add to our test signals an additive factory noise
extracted from NOISEX-92 database (Varga et al., 1992) for
different signal to noise ratio.

Table 6 shows the drastically degradation m the
performance of the recognition system when deployed in
an environment for which it has not been trained.

Investigation of MLLR adaptation technique: Model
adaptation techniques have been shown as an effective
way to address this problem of mismatch. The MLLR
adaptation procedure works as the original training
procedure to overcome this latter. We implemented MLLR
algorithms for environment adaptation: Number of
regression classes R was fixed to be four. We investigated
the effect of the size of the adaptation data using the
linear regression procedure.

The results collected from Table 7 show the
performance of the adaptation process measured in terms
of generalised word error rate as a function of the size of
adaptation data.

We observe that the recognition performance
increases with the size of adaptation data. However, a
substantial gain in the WER of around 17% 1s reached for
a SNR of 5 dB.

CONCLUSION
In this study, the Statistical Learming Theory (SLT)

and the MLLR adaptation are applied in order to analyze,
in the sense of minimum word error rate, the consistency

of the training estimator based on MLE criterion in clean
and mismatched environmental conditions. For this
purpose, the issue of discrimination is addressed at the
acoustic feature and model levels by building better
classifiers vielding performing recognition system. Several
experiments have been conducted for the purpose of
finding the optimum training complexity according to the
Baum-Welch based MLE traimng criterion. Followings are
the essential of our findings.

In the first and second experiment, we showed that an
optimal recognition system could be conceived with
MFCC acoustic features appended by 0 order cepstral and
first order derivatives, training data size of 2500 and 16
multivariate Gaussian mixtures associated to each emitting
HMM state. The performance of the recognition system
conducted in the optimal condition obtamed by the
previous two experiments is further evaluated in the third
experiment by modifying the traiming data set. We
observed that with only 2000 training data size, the
generalized word ermror rate decreased by 2% in
comparison with that obtained in the first experiment. We
finally tested the MLLR adaptation algorithm of the
recognition system tested in noisy environment. We
clearly showed a great improvement of the recogmtion
WER especially at low SNR values.
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