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Abstract: This study proposes a new approach to indirect vector controlled induction motor drives. Induction
motor drives for variable speed have many common mdustrial applications. An application of Artificial Neural
Network (ANN) and genetic algorithms on vector control are carried out using space vector pulse width
modulation in this study. Proportional plus derivative (PT) controller 1s used to control speed of induction
motor. In this study, optimization of PI coefficients in vector control 1s carried out by ANN-Genetic. These
controllers are applied to drive system with 0.55 kW mduction motor. A Digital Signal Processor Controller
(dsPIC30F6010) was used to carry out control applications. Tt is suitable to control induction motor as a soft
starter and speed adjustment in compressors, blowers, fans, pumps and many other applications.
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INTRODUCTION

Vector control 1s a control strategy to decouple flux
and torque from an induction motor in order to emulate a
DC motor. The great advantage 1s that it can be controlled
as easy as a DC motor and induction one with all of its
advantages such as lugh efficiency, robustness, no
maintenance and low cost. Of course there are many
industrial applications for an induction motor with
variable speed for which this control had become so
umportant (Betin and Depernet, 1997).

The motor control issues are traditionally handled by
fixed gain Proportional Integral (PI) and Proportional
Integral Derivative (PID) controllers. However, the fixed
gain controllers are very sensitive to parameter variations,
load disturbances, etc., So, the controller parameters have
to be continually adapted. The problem can be solved by
several adaptive control techniques such as model
reference adaptive control (Sugimoto and Tamai, 1987),
sliding mode control, variable structure control and self
tuning PI controllers, etc. The design of all of the above
controllers depends on the exact system mathematical
model. However, 1t 1s often difficult to develop an accurate
system mathematical model due to unknown load
variation, unknown and unavoidable parameter variations
due to saturation, temperature variations and system
disturbances (Uddin et al., 2002).

In high performance applications, it is useful
automatically extract the complex relations that represent
the drive behavior. The use of learning through example
algorithms can be a powerful toll for automatic
modeling variable speed drives (Maia et al., 1994). They
can automatically extract a functional relationship

representative of the drive behavior. These methods
present some advantages over the classical ones
since they do not rely on the precise knowledge of
mathematical models and parameters. On the other
hand, electromechanical systems usually present internal
nonlinearities and parameter deviation, which are difficult
to model (Cardoso et al., 1998).

PT controller is unguestionably the most commonly
used control algorithm the process control industry. The
mainreason is its relatively simple structure, which can be
easily understood and implemented in practice and that
many sophisticated control strategies, such as model
predictive control, are based on it. In spite of its wide
spread use there exists no generally accepted design
method for the controller (Wang and Shao, 2000).

Most industrial processes exhibit nonlinear dynamics
and this places additional complexity on the modeling
procedure used. In practice, many nonlinear processes are
approximated by reduced order models, possibly linear,
which are clearly related to the underlying process
characteristics. However, these models may only be valid
within certain specific operating ranges. When operating
conditions change, a different model may be required to
be used or the model parameters may need to be adapted.

System model 13 necessary for tuning controller
coefficients in an appropriate manner (e.g., percent
overshoot, settling time). Because of neglecting some
parameters, the mathematical model cannot represent the
physical system exactly in most applications. That’s why,
controller coefficients cannot be tuned appropriately.

The tumng of electric drive controller 1s a complex
problem due to the many non-linearities of the machines,

the whole

power converter and controller. Therefore,
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system model can be obtained by using the ANN
structure. Optimization process of PI speed coefficients in
the vector control is determined by using genetic
algorithms. The ANN architecture 1s explained the next
section.

Neural network: Artificial Neural Networks (ANNs) are
successfully used mn a lot of areas such as control, early
detection of electrical machine faults and digital signal
processing in everyday technology. The memory of a
neural network lies in the weights and biases. The neural
networks can be classified, in terms of how the weights
and biases are obtained, into three categories.

Multi-Layer Perceptrons (MLPs) are the simplest
and therefore most commonly used neural network
architectures. The back propagation algorithm 1s the most
commonly adopted MLP training algorithm. This type of
neural network 1s known as a supervised network,
because it requires a desired output in order to learn. The
goal of this type of network is to create a model that
correctly maps the input to the output using historical
data, so that the model can then be used to produce
the output when the desired output is unknown. The
ANN model structure of the system 1s shown in Fig. 1,
where f, K, and K, are fitness function, PI coefficients,
respectively. The ANN parameters for the model system
are shown in Table 1.

There was no criterion to select cell number at every
layer of the ANN structure; layer number and cell number
were determined with experiment. In the same way, the
learning and momentum coefficients were determined by
experiences at previous studies.

Vector control: The main objective of the vector
control of induction motors 1s, as in DC machines, to
mdependently control the torque and the flux; this 15 done
by using a d-q rotating reference frame synchronously
with the rotor flux space vector (Lorenz and Lawsorn, 1990)
as shown in Fig. 2, the d axis is aligned with the rotor flux
space vector. Under this condition,

y=0and y} =yt

For the ideal state decoupling the torque equation
become analogous to the dc machine as follows:

1 =3P,
2 L

Figure 2 shows the implemented diagram of an
mduction motor indirect field-oriented control (Ross and
Theys, 2005)

Kp
f

Ki
Fig. 1: The ANN model structure of the system
Table 1: The ANN parameters for the model system
Parameters Value
Number of neurons for input layer 2
Number of neurons of the output layer 1
Layer munber 1
First layer cell number 6
Second layer cell number -
First layer activation function Sigmoid
Recond layer activation fimction Rigmoid
Maximum iteration number 30000
Error limit 0.0001
Training coefficient 0.7
Momentum coefficient 0.9

In an asynchronous squirrel cage induction motor the
mechamcal speed of the rotor 1s slightly less than the
rotating flux field. The difference in angular speed is called
slip and 1s represented as a fraction of the rotating flux
speed. Park and Inverse Transforms require an mput
angle 6. The variable 0 represents the angular position of
the rotor flux vector. The correct angular position of the
rotor flux vector must be estimated based on known
values and motor parameters. This estimation uses a
motor equivalent circuit model. The slip required to
operate the motor 1s accounted for in the flux estimator
equations and is included in the calculated angle. The flux
estimator calculates a new flux position based on stator
currents, the rotor velocity and the rotor electrical time
constant. In this study, this implementation of the flux
estimation 1s based on the motor current model and m
particular these three equations (Ross and Theys, 2005).

Magnetizing current;

T
=1 +—(I,—1 (1
mr mr Tr ( d mr)
Flux speed,
1 I
£ =yt —— T @)
' (ppr ) {Trwb Imr}
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Fig. 2: The overall vector-controlled induction motor drive system

Flux angle;
0=0+w,f.T 3)

Where:

L. = Magnetizing current (as calculated from
measured values)

f, = Flux speed (as calculated from measured
values)

T = Sample (loop) time (parameter in program)

n = Rotor speed (measured with the shaft
encoder)

(T.=L/R,) = Rotor time constant (must be obtained from
the motor manufacturer)

0 = Rotor flux position (output variable from
this module)

w, = Electrical nominal flux speed (from motor
name plate)

P, = Number of pole pairs (from motor name
plate)

During steady state conditions, the Iy current
component is responsible for generating the rotor flux. For
transient changes, there is a low-pass filtered relationship
between the measured I, current component and the rotor
flux. The magnetizing current, I . 1s the component of I,
that 1s responsible for producing the rotor flux. Under
steady-state conditions, I;1s equal to 1. Eq. 1 relates [,
and I, This equation is dependent upon accurate
knowledge of the rotor electrical time constant
Essentially, Eq. 1 corrects the flux producing component
of T, during transient changes.

The computed I, value 1s then used to compute
the slip frequency, as shown in Eq. 2. The slip frequency
is a function of the roter electrical time constant, I, I, and
the current rotor velocity. Equation 3 1s the final equation
of the flux estumator. It calculates the new flux angle based
on the slip frequency calculated in Eq. 2 and the
previously calculated flux angle. Tf the slip frequency and
stator currents have been related by Eq. 1 and 2, then
motor flux and torque have been specified. Furthermore,
these two equations ensure that the stator currents are
properly oriented to the rotor flux. If proper orientation
of the stator currents and rotor flux 1s maimntained, then
flux and torque can be controlled independently. The I,
current component controls rotor flux and the I,
current component controls motor torque. This is the
key principle of indirect vector control (Ross and
Theys, 2005).

Experimental setup: The experimental setup consisted of
a motor and generator that was comnected to it by a
connecting element. The motor used was a 0.55 kW,
1.34A, 50 Hz, Cos¢p = 0.84, three phase squirrel-cage
induction motor. The processor used in this work was a
738 MHZ dsPIC30F6010 Digital Signal Processor
Controller (DSP Controller). The processor communicated
with the PC via USB port. The block diagram of this
application circuit is shown in Fig. 3.

Required values for PWM output of the DSP
controller are calculated by using the vector control
method. PWM time base is 100 microsecond for this
application. The control loop is carried out once during
each 40 PWM time base. Dead time 1s formed by the
controller. The value of dead time determined by a register
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Fig. 3: The block diagram of the application circuit
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Fig. 4: The flow chart for the training process

is taken 4 microseconds. The DSP controller program
for the control process was written in dsPIC30F6010
assembly language and C30 language. Controlling and
compiling process were performed by a compiler program.

Modelling of the induction motor using ANN: The ANN
model used 1s a multi-layer perceptron model, m which
there 1s more than one layer between input and output.
The backpropogation of the error algorithm used as the
training algorithm is used for training of generalized delta
rule. The traiming process of this ANN model 1s shown
Fig. 4.

Thirty sets of input-output data taken from the
application circuit are given in Table 1. The coefficients of
the ANN are trained using data in Table 2. Change m the
error in training process 1s shown in Fig. 5.

Table 2: Data used for the ANN

Data set Kp Ki = 1/(1+Mofrpm) +2%Ts(ms))
1 6.500 1.100 0.477
2 6.500 0.975 0.488
3 6.500 0.725 0.348
4 6.500 0.225 0.683
5 6.062 1.100 0.488
6 6.062 0.975 0.454
25 3.437 1.100 0.391
26 3.437 0.850 0.349
27 3.437 0.600 0.402
28 3.437 0.350 0.429
29 3.437 0.108 0.511
30 4.577 0.225 0.370
0.091
0.08 1
0.07 1
0.06 1
& 0.05 4
0.04 1
0.03 -
0.02 4
0.01 1
0.00 T T T T 1
0 1000 2000 3000 4000 5000
Tteration No.

Fig. 5: The error values according to iteration number

As shown in Fig. 5, the error values reduce
acceptable wvalues when iteration number iz 3000.
Therefore, the training process was finished at 3000
iterations. Then, the best Kp and K1 pairs are obtained by
using genetic algorithm program.

Optimization of PI coefficients using GA: GAs are
based on an analogy to the genetic code in owr own
DNA  (deoxyribonucleic acid) structure, where its
coded chromosome is composed of many genes
{Goldberg, 1989). GA approach involves a population of
individuals represented by strings of characters or digits.
Each string is, however, coded with a search point in the
hyper search-space. From the evolutionary theory, only
the most suted individuals in the population are likely to
survive and generate off-spring that passes their genetic
material to the next generation.

The GA used in this paper known as the simple
genetic algorithm. Tn the algorithm, the three-operator GA
with only minor deviations from the original 1s used
(Dimeo and Lee, 1995).

Different crossover and mutation rates are used for
processing of optimization of genetic algorithms. Ten of
the fitness values obtained, listed from the largest fitness
value to the smallest and the fitness values of the
members of the first generation are shown in Table 3. The
flow chart of the GA is shown in Fig. 6 (Ustun and
Demirtas, 2005).
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A PI controller with the transfer function

15 employed to control the process. The optimum values
for the Kp and K1 pairs were obtained using a computer
program written in C++ language for the GA. This process
executes with three different operators at bit level. Thirty
of the Kp and Ki pairs were determined at random. Kp
and Ki paws consisted of 15 bits and 15 bits,
respectively. These Kp and Ki pairs were entered to

Table 3: Fitness values of the members for ANN method and GA
parameters in the first generation

Parameters Values
Population size 30.000
Crossover operator 0.600
Mutation size 0.100
Fitness of member 1 2.049
Fitness of member 2 2.049
Fitness of member 3 2.049
Fitness of member 4 1.944
Fitness of member 5 1.944
Fitness of member 6 1.944
Fitness of member 7 1.944
Fitness of member 8 1.944
Fitness of member 9 1.793
Fitness of member 10 1.793
Appoint starting values and
population metmbers random
>
h 4
Find fitness values of population
members
Reproduction

Fig. 6: The flow chart of the GA

ANFIS model as input. The fitness values were obtained
from the ANFIS outputs. These values were then used as
the fitness function.

The one-pomt crossover method was used on the
crossover operator. Mutual parameters of two random
members on the crossover were divided into two parts
and their positions were changed. A random bit of a
random number on the mutation process was changed 0
to 1 and 1 to 0. For the optimization process, mutation rate
15 increased when converge occurs mn 5-10 generation.
Therefore, early converge is prevented and in addition,
members that have high fitness values were obtamned.

The range of Kp and Ki values chosen lay between
(3-6.5) and (0.1-1.1), respectively. The fitness function is
defined as:

1
CM, +2%T,+1

RESULTS AND DISCUSSION

A model-based control structures are suggested that
include the ANN dynamics model of the system, in this
work. The ANN is systematically constructed from the
input-output data.

The controller 15 applied to the system when the
motor speed is about 1000 rpm. That is, the speed is
increased from 1000 to 2000 rpm by using the proposed
controllers. The system is worked to 1000 rpm as open-
loop control.

The ANN model follows the system output, with a
small error that arises from differences between
experimental conditions and the model of the non-linear
system. It shows that the ANN model created for the
system models the system successfully. System outputs
are demonstrated for different Kp and Ki pairs in Fig. 7
and 8. Those Kp and Ki pairs are random selected.

The optimum PI coefficients were found by using
ANN-Genetic method. The optimal Kp and Ki pairs for
ANN-Genetic method are foumd as Kp=6.47 and K1 = 0.1.
The speed of the rotor for these values is shown in Fig. 9.
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Fig. 7: Speed of rotor for Kp=3.44andKi=1.1
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Fig. 8 Speed of rotor for Kp = 6.06 and Ki =0.47
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Fig. 9. The speed response for optimal Kp and Ki
(Kp=5.069-Ki=0132)

The settling time is shorter and the maximum
overshoot is minimized for these values. The Results of
the ANN-Genetic method show that this method 13 a good
control system.

CONCLUSIONS

This study describes the ANN-Genetic method.
Actual system (motor and controller) could be modelled
using ANN structure. Tt was also determined that the
maximum overshoot and settling time are very small if the
system is controlled by control parameters obtained from
the optimization process which uses GA.

The results presented show that the ANN is able to
produce accurate dynamic models of process response
directly from I/O data. GA 1s suitable for optimization of
controller coefficients by the performance criteria
considered. This process can be also applied for nonlinear
systems controlled by PD and PID controller, or a number
of applications such a machine tool, robotics and servo
drives.
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