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Abstract: The description of real-life engineering structures systems is associated with some amount of
uncertainty related to material properties, geometric parameters, boundary conditions and applied loads. In the
context of structural dynamics, it is necessary to consider random eigenvalue problems m order to account for
these uncertainties. A proposed approach based on the combination of the probabilistic Transformation
methods for a random variable and the Rayleigh method in order to evaluate the probability density function
of the eigenvalue of stochastic systems. This approach has the advantage of giving directly the whole density
function (closed-form) of the eigenvalues, which 1s very helpful for probabilistic analysis. To show the accuracy
of the proposed method, an example of a beam is analyzed for an uncertainty in the material (Young’s modulus)
and the geometry (beam length). The results are compared with Monte Carlo Simulations.
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INTRODUCTION

The characterization of the natural frequencies and
mode shapes play a fundamental role in the analysis and
the design of dynamic systems. The determination of this
mformation requires the solution of an eigenvalue
problem. Eigenvalue problems also arise in the context of
the stability analysis of structures. This problem could be
either a differential eigenvalue problem or a matrix
eigenvalue problem, depending on whether a continuous
model or a discrete model is used to describe the given
vibrating system. Several studies have been conducted
on this topic since the mid-sixties. The study of
probabilistic characterization of the eigensolutions of
random matrix and differential operators 13 now an
important rtesearch topic in the field of stochastic
structural mechanics. The paper by Boyce (1968) and the
book by Scheidt and Purkert (1983) are useful sources of
information on early work in this area of research and also
provide a systematic account of different approaches to
random eigenvalue problems. Several review papers, for
example, by Thrahim (1987), Benaroya and Rehalk (1988),
Benaroya (1992), Manohar and Tbrahim (1999) and
Manohar and Gupta (2003) have appeared m this field
which summarize the current as well as the earlier works.
The current literature on random eigenvalue arising in
engineering systems 1s dominated by the mean-centered
perturbation methods. These methods work well when the
uncertainties are small and the parameter distribution is
Gaussian. Methods which are not based on mean-
centered perturbation but still have the generality and
computational efficiency to be applicable for engineering
dynamic systems are rare.
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In this study we obtain a closed-form expression of
the probability density function of the random eigenvalue,
for large uncertainties with non-Gaussian distributions.

TRANSFORMATION METHOD

Frequently, in the solution of a stochastic equation,
one encounters the need to derive the probability
distribution of a function of random variables. This will
give the complete solution of the stochastic equation.
One of the available methods for finding the distribution
of a function of random vamables 1s the Cumulative
distribution function techmique. That 1s, if X, X, X,
¥, are continuous random variables with known joint
PDF f(x,, X, Xs......X,.), the distribution of a random function
Y = u (xy, X, X,....,.%,), 18 determined by computing the
cumulative distribution function (CDF) of Y as follows:

y]
M

<

G(y)= Pr[Y < y] = Pr[u(xl,xz,x3,....,xn)

~G(y)= jf(x1=X2=X3=----=Xn JdA
A

Where A is the sub-space of points (x, x;, X5,....,.X,) I
n-dimensional space defined by the inequality u(x,, x,,
Xa... X, )< ¥. Bven in what superficially appears to be very
simple, this can be quite tedious especially for irregular
domain A and for complicated joint distribution function
f(x,, X5, %g,.....%,). This point out the desirability of having,
if possible, various methods of determination of the
distribution of a function of random variables. One may
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find that other techniques are available but often a
particular technique is superior to the others in a given
situation. The soundest methods are the random variable
transformation and the moment generating function
techniques (Soong, 1973). In this study, we focus on the
first technique. Tn this technique, if the joint probability
density function (PDF) of the input random variables
X, Xo X, X, 18 well known in a closed form, the theory
of Transformation method gives the joint probability
density function of the output random functions

Y, =0y (X, Xg.. X, )}

n
i=1

under some mathematical conditions.

Theorem 1: Suppose that X is a continuous random
variable with f; (x) and A <R is the one-dimensional
space where f, (x) > 0. Consider the random variable
(function) Y = w(X), where v = u(x) defines a one-to-one
transformation that maps the set A onto a set B R so
that the equation ¥ = u(x) can be uniquely solved for x in
terms of y, say x = w(y). Then, the PDF of Y is:

g(y)=f[w(v) ]|, yeB @
where, J= dx = dw is the Jacobian of the transformation,
dy dy

which must be continuous and not vamshing for all
points y € B.

Proof: Let us suppose the following two cases:
Case (1) y = (x) 1s increasing fumction

w(b)
Pr[a<Y <b]:Pr[w(a)<X<w(b)J: PDF(X)dX(?’)
w(a)

Changing the variable of integration from x to ¥y
where x = w(y), we obtai:

w(b) b
Prla<Y <b|= J- PDF(x) dx = jPDF[W(y)Jw'(y)dy
wi(a) a

)
From the previous integral we find:
8(y)=PDF w(y) Jw (y) - PDF[w(y) [ ©

If we recogmze ] = w (y) as the reciprocal of the slope of
the tangent line of the mcreasmng function y = u(x), it 1s
the obvious that J = |J| and hence,

8(y) = PDE w(y}] 1 (©)

Case (2) y = u(x) 1s decreasing fimction

In this case
Pr[a <Y <b] = Pr[w(b) < X< W(a)}
wie) @)
= I PDF(x )dx
w(b)

Changing the variable of integration, we obtain:

Pr[a<Y<b]:—jPDF[w(y)JW'(y)dy (8)

a

From the previous integral we find:

g(y)=-PDF| w(y)|w'(y)=-PDF[ w(y)]1 )

But in this case, the slope of the curve is negative and
I=-1T|. Hence

gly)=PDF[wiy) ]|1] (1)
Rayleigh Method (Boswell and Mello, 1993)

The energy is supplied to a vibrating system by the
applied force and the dissipation effects. During motion,
the energy is stored as a kinetic energy T, a potential
energy P and a strain energy V. By applying the principle
of conservation of energy to an undamped system
subjected to free vibration, the following relationship
holds:

V+T+P = a constant

The method proposed by Rayleigh may be developed
from this statement by particular reference to a single
degree of freedom system.

The kinetic energy of the system is:

1l & (1)
2 dt

Whle the strain energy is

V= g(x(t)+ &) (12)

and the potential energy is

P =-mg(x(t) + &) (13)
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In which x(t) is the displacement from the static position
(positive downward) and & is the static displacement.
Thus for vertical motion

2
lm dx(t)
2 dt
—mg(x(t)+ 6)=aconstant

1
+_
2

kix(1)+ 8)* (14)

Rearranging and taking constants to the right-hand side

1
—m
2

ax(n®
dt

(15)

+ %kx(t)2 =aconstant

Assuming the displacement vary harmonically with the
frequency, i.e.

x(t) = A sin wt (16)
And substituting in previous equation, the following
relationship 1s obtained after equating coefficients of
sin’wt

L nAaZw? = Lia? 17
2 2
This equation states that maximum kinetic energy equals
the maximum strain energy. These energy states occur
when the system passes through the equilibrium and
extreme position respectively, Le.

\%

Tmax ma

The relationship given by the previous equation can be
applied to the problem of the vibration of a umform
slender beam for which the kinetic and strain energies are
given by

L
Toas =3 [y
’ , (18)
L 2
Vinax :lj EI 7(1 y(x) dx
2Jo dx?

where y(x) is the amplitude of the motion or mode shape.
Thus, the frequency is obtained from:
2

L 2
J.EI dx
0

wl=

_ jﬂLmy@c)z

{dzy@

a* (19)
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If the beam has concentrated masses m,, m,,....,m, at
Xy, Xgeoo X, the frequency is obtained from
2
L 2
[ El[m} i
W2 0 dt (20)

[ et s riljmry(x)z

The last equation is fundamental to the Rayleigh
method in which approximations to the natural frequency
are computed from assumptions regarding the mode
shape. In practice the method may be used to obtain the
frequency of the first mode for which suitable
approximations can be made for the shape of simple

structural elements.

PROPOSED APPROACH: TRANSFORMATION-
RAYLEIGH METHOD

Our proposed Approach based on the combination
of Transformation and Rayleigh method. The Algorithm
1s shown mn Fig. 1.

Begin

N/

Find W (frequency} in symbolic form
using Rayleigh method

/

Find the inverse function f' which give us
the random input (E, 1 or L) in term of w

Calculate the Jacobean of the inverse fimction

Find the PDF of w using transformation method

/

\V4
(B )

Fig. 1: Transformation-Rayleigh algorithm
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The application of this method will be demonstrated
in the following example.

Application: In this application, we would like to
determine the natural frequency of the fundamental mode
of vibration for the beam shown in Fig. 2. The beam has a
mass of m per unit length and supports a central point
mass M and we suppose the Young's modulus E 1s
random.

First step: Applying rayleigh method: An estimate the
natural frequency of the shape of the first mode of
vibration is required for the beam. A reasonable choice is
that shown in Fig 2, which is the deflected shape of a
mass less subjected to a central pomnt F. The
correspending maximum deflection 1s assumed to be a. by
applying the differential equation of flexure for the beam
between A and B, which is

2D

And by integrating and solving for the constants, the
deflected shape of the left-hand side of the beam is

y= a{:s(i)zl(i)ﬂ (22)

The maximum kinetic and strain energies of the system are
now required. The maximum kinetic energy of the point

mass is given by lMWZ A2 and the kinetic energy of an
2

element dx of self mass m per unit length is

l(mdx)WZYZ_Integrating the latter value for the total
2

beam and remembering that the expression for the
deflection is valid between A and B, the total kinetic
energy of the whole system 1s

1 L2l o % 2
T, = 0.5Mw2A? +2x—mw2A2j 34 P | ax
2 0 L L
= Ty = WAZ(0.5M + 0.243mL)

(23)

Since the strain energy for the assumed deflected

shape 1s lFa m which
2

FL?

. (24)
48EIL
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A
=
L2

Fig. 2: Beam subjected to a central point F
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Fig. 3: Probability density function of W when E
uniformly distributed

the maximum stramn energy 1is

 24EIAZ
-5

v @5

max

Therefore, from T, = V..., for the beam, the frequency is
obtained from

24EI

VV2 = 3
{0.5M + 0.243mL)L

(26)

Second step: Find the inverse function:

From the first step, we deduce

w=[E=E=f"'wi=

~ wH(0.5M + 0.243mL)L}
241

Third step: Calculate the Jacobean

(27)
E

From the second step,

w(0.5M + 0.243mL)L?
121

(28)

7=

Fourth step: Applying the transformation method: By
applying the transformation method (Fig. 3-5) we obtain
the probability density function of w:
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Fig. 4 Probability density function of W when E
exponentially distributed

0.47

| + Montecarlo
0351 _ Proposed method

0.31

PDF (W)

=~

w
Fig. 5. Probability density function of W when E normally
distributed
w(0.5M + 0.243mL)L
R0 = Wohemy @

121

Case I: E random variable, uniformly distributed
(E=1I(1,2)).

Case II: E random variable, exponentially distributed
(E=»exp(1)).

Case TII: E random variable, normally distributed
(E=N(1,2)).

CONCLUSIONS

In this study, the statistics of the eigenvalue of
discrete linear dynamic systems with parameter
uncertamnties have been considered. The uncertainty has
been considered in the material e.g., young modulus. Our
new techmque based on the combination of the
transformation method and the Rayleigh method to
evaluate the Probability Density Function (PDF) of the
solution. Then to proof the performance of our method we
compared the result with the result of 10000 simulation of

Monte Carlo method.
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