Journal of
Applied Sciences

ISSN 1812-5654

science ANSI@??
alert http://ansinet.com

Tournal of Applied Sciences 7 (1): 91-97, 2007
ISSN 1812-5654
© 2007 Asian Network for Scientific Information

(DynaDBEdit): Dynamic Database Textbox Field and Validator for
Web and Application Software

"Yasar Guneri Sahin and *Halil Ibrahim Bulbul
"Department of Computer Engineering, Yasar University, zmir, Turkey
*Department of Computer Education, Gazi University, Ankara, Turkey

Abstract: When the database tables are concerned, alterations in the structure of table attributes have a direct
impact on the edit fields those are used in database application software (e.g., Web pages, application
software). In case when any of the attributes are changed, it becomes necessary for software or Web pages to
be recompiled following the changes made in edit fields. This process of recompilation 1s a long and costly
operation, which means a temporary pause for transactions. For this reason, that it causes mmportant loss in
financial sector. Besides, the maxim of the software engineering is that the final product should require the least
updating. This study offers an object and component that aims to remove the necessity for the recompilation
of application software following the amendments made in the attributes. This component 13 a contribution to
software development and maintenance for it i1s capable of automatically obtaining the data of domain for the
attributes in database tables and controlling the data entrance process. Moreover, it is also a contribution for
the users and practitioners in the sense that it reduces the time required to correct the errors and to ensure data

coherency database integrity.

Key words: Field validator, software developing, domain builder, textbox

INTRODUCTION

Although, it is not a common practice to make
changes in database table structures following the
process of system integration of multi-tier application
software and their maintenance, sometimes may be
required. Additionally, domains determined for attributes
require changes usually. Since, the changes, which
became necessary due to some later information and that
are originated from legislation, will directly affect the
application tier (layer); it will necessitate the recompilation
of application software. And, when the Web applications
are concemed, these changes necessitate an update in the
relevant areas of the Web page.

Such a recompilation m application software and an
update in Web pages require a temporary pause in the
operation of application software or for Web pages to go
temporarily offline. It simultaneously requires a
redistribution of application software to clients when the
intranet environment is concemed. Interruption in the
operation of application software could result i great
losses especially in the finance (or banking) sector and
when this application software is used in environments
having direct link to preduction line. In addition to that,
sending of false data during the integrity constraints

(type constraints) and domain check operations would
result in an increase in data traffic and an increase in the
amount of time spent for the re-sending of true data. This
study offers a method aiming at a contribution for
ensuring database coherency and avoiding any cut offs
in the operation of application software due to the
changes made to relational attributes. Tt would in this way
be possible to prevent great loses of time and money.

MOTIVATION AND RELATED WORKS

The maintenance phase, as one of the most important
elements of software development process, is an open-
ended process. The necessary changes that would arise
at this phase would affect the permanence and
continuance of the project and would result in lugher
costs. Therefore, adding m advance the changes to the
software that would be required in the future would lay
the burden of users and practitioners down. From this
point of view it could be said that defining variable and
dynamic edit fields would be very useful during the
application phase. The content of the method presented
in this study is obtamed through a consideration of
possible necessary changes that could arise in all kinds of
software in the later phases of application. Tt is quite
possible to make additions to the list of those changes.

Corresponding Author: Yasar Guneri Sahin, Department of Computer Engineering, Yasar University Borova Izmir, Turkey
Tel: +90 (232) 461 4111/305 Fax: +90 (232) 461 4121

J. Applied Sci., 7 (1): 91-97, 2007

Possible type alteration in attributes: The changes that
could be made in the structure of aftributes could be
examined as followings:

¢ TIn this kind of change a pre-defined type is changed
with another type. A change in the composition of
defined account numbers by a bank from digits into
characters could be an example to this kind of
change. Another example could be given from an
integrated meat facility where selling unit shown in
the stock table 1s mteger since the cattle 13 sold
undetached. Changing of this umit into kilo would
double the area, is another example for type changes.
Such cases would require all related field types in the
application layer to change.

Such kind of changes arouse as a response to an
increase in the amount of data entered in time. A bank’s
ncreasing its customer number format from 7 (. 338 ##:
where # stands for numbers and $ for characters) to 8
digits (##.$333.#%). This situation requires an increase in
the number of digits in entrance as to make it comply with
8 digits and thus a recompilation. Many other examples
could also be given for this situation.

Possible attribute domain alterations: Despite being
similar to constramnt changes, domain changes that is
frequent type of change, have some differences with
constraint changes with respect to numerical fields. This
kind of change is made in the monetary attribute domain
especially due to the currency changes. Such lands of
changes affect almost all commercial sectors and would
result in important financial and time loss. An important
example for this 1s the Turkish experience of eliminating six
zeros from in the new Turkish currency, during the
conversion from TL to YTL. Following the conversion, 1
million TL became equal to 1 YTL and it required all data
entrance intervals and data entrance masks to change in
every field related to monetary affairs. It is also possible
to give various examples for the change of domain
situations.

The changes that are mentioned above are of the sort
that could be encountered in almost all applications. It is
therefore very important to prevent monetary and time
loses that arouse as a result of the recompilation
processes which are caused by the above-mentioned
changes. This study would present the DynaDBEdit
(Dynamic Database Field Editor) as a method that could
be employed to prevent recompilation loses.

Related works: Despite there are some studies on
methods of updating database structure, there 15 no

92

general study that deal with all data types that are capable
of being fully editable. Additionally, the studies carried
out in this field were usually theoretical works that had
underestimated the data operations carried out in the layer
of application. This section of the present study mentions
some studies that were carried out in this field.

Omne of the studies was carried out in a bid to develop
the update and operation features of multimedia
environments over a database (Kambur et al., 2003). The
study presents a query update method that is based on
programming languages. However, the study 1s only
related to multimedia environments.

Ducrou, Wormuth and Eklund’s study are dealing
with the construction of relational schema navigation by
using formal concept analysis (Ducrou et al, 2005). In
that study a method was developed m Web based
applications and was accompanied by implementation of
the method. That study is akin to this study with respect
to obtaimng work schema mformation. However, the basic
difference with this present study and of Ducrou,
Wormuth and Eklund is that their work is just attempts of
making analyses.

Hilderman, Hamilton and Cercone dealt with data
mining over databases through wusmg domain
generalization graphs in their study. Moreover, this study
was resonated with its implementation on Serial versions
and parallel versions of the Multi-attribute generalization
algorithm for multiple-attributes (Hilderman et af., 1999).
Despite being akin to this study with respect to obtaining
attribute domains, Hilderman et al. (1990) study is more
focused on data mming. Method and components of this
study were completely focused on application and was
brought to a state where it can be used with all databases.
In another study, a method was introduced m order to
decrease or solve the data conversion problems by
constructing a new domam introduction layer within

the database by using MesoData (DeVries and
Roddick, 2004).
Some other researches and works that could

somewhat be related to the issue were also examimed.
Some of those studies were about software developing
and productivity (Fritsch and Renz, 2005, Raghavan,
2002). The present study dealt with some other related
works with respect to method and application (Chua ef af .,
2003, Mungnirun, 2006; Qommen and Thiyagarajah, 1999;
Gunopulos et al., 2005, Weber, 2002; Castano, 1998;
Hull, 1986, Miller, 1994; Sjoberg, 1993; Steidl, 2001;
Cheung et al, 2005, Guruge and Stonier, 2006;
Maglkanaraki et al., 2002). Despite being a valuable source
for the present study, these other studies differ with the
present study with to applicatton and
methodology. The mamn difference 1s that those studies

respect

J. Applied Sci., 7 (1): 91-97, 2007

were carried out on meta-data applications and schema
but a general pattern of application was not given. On the
other hand, there is a similar text box component that is
developed by Active Up Company over ASP. net. Despite
this component allows to enter mask information and type
mnformation, 1t doesn't allow for demain control and
dynamic updating. The method introduced in the
present study would allow adding dynamic updating
and domain control functions to text box component
(Active Up, 2006).

Dyna DBEdit engine: The aim of this study is to prevent
mnterruption of the application software mentioned in the
mtroduction section and to allow required changes in any
moment with a contribution to database integrity and
consistency. In order to reach tlus amm, the study
introduces a method and based upon this method
develops an object and a component.

DynaDBEdit engine, the general structure of which
15 shown m Fig. 1, works once m each loading of the
software. By controlling the attributes in the relevant
relations 1t transfers the necessary changes to the
relevant areas the application form. This object that is
directly commected to the application layer which 1s
located in data module, works as a bridge between
database and form edit fields. Data that 1s sent and
received between edit fields and database would be
filtered with this object in order to prevent transfer of
wrong data. In this way, it would both contribute to
prevent errors that could be done while editing data and
a contribution to the coherency of the database.

DynaDBEdit object: The DynaDBEdit object that is
developed for database connected application software is
composed of three main parts. Figure 2, shows a schema
of the DynaDBEdit object. Although changing with
respect to application development environments, the
order of these three main parts is the constructor, the
event handler and the destructor.

DynaDBEdit constructor: The constructor part, which is
the main part of the object, is itself composed of three
parts that are field type reader, domain checker and
constraint builder.

The constructor automatically locates itself on the
create event handler (onCreate, frmBuild) of the form that
it is located on. Initially it reads the relational schema to
which the component is connected. Following the process
of schema reading it determines the field type from the
properties of the attribute it is diverted to. The field types
that could be used by the object are given in Table 1. All
editable general types that could be defined m databases
are added to this object.

93

Following the type reading and object type defining
process, the process of editing field domain identification
1s mitiated. The process of domain 1dentification changes
with respect to the objects [domain-identifier] property.
Domain Tdentification process is carried out by

Table 1: Acceptable attributes types by DynaDBEdit

Numerical types Character types
ID Tvpe 1D Type
tTnt Tiny integer bStr Rinary string
sInt Small integer Char Char
Tnt Tnteger varChar Variable char
bInt Big integer longvarChar Long variable char
utInt Unsigned tiny int. wChar Wide char
UsInt Unsigned small int. varwChar Variable wide char
Uint Unsigned integer longvarwChar T.ong var. Wide char
ubInt Unsigned big integer varChar2 Variable char
single Single edit Edit string
Double Double memo Memo string
CUITency Currency text Text stroig
decimal Decimal
numeric Generic numerical
boolean Boolean
date Date
time Time
varmumeric Variable numerical]
- | R
DynaDBEt A
Engine A,
—> A
<J A,
lation
Form
Application Database

Fig. 1: General structure of DynaDBEdit

Field type reader Range updating
Rang checker Field updating
e
Constructor T Destructor]
Key evevt handler
Type Error Rang
controller | *”| handler [*?] controller
DynaDEBEdit

Fig. 2: DynaDBEdit object schema

J. Applied Sci., 7 (1): 91-97, 2007

Table 2: Default domains for di_default

Attribute max
Type Size Size Value interval Characters permitted
Character 1 1 #0..#255 (except special chars)
String X X - #0..#255 (except special chars)
Integer - 9 -2147483648..214 7483647 0..9,-
Real (float) - 12 2.0x107%,1.7x10% 0.9-,..Ee
Date 10 10 01.01.0001..31.12.3000 0.9.-,.,,.Ee

employing the method chosen in accordance with the
demand of user.
Domain_identifier = [di none, di_default, di_intellegent];

If the method chosen among the methods mentioned
above 13 di_none, then the domain 1s 1dentified as to allow
negative and decimal characters on the condition that no
space will be given between characters and characters to
be alpha-numerical fields, mumbers for
numerical fields.

If the di default value 15 identified as domain-
1identifier, then the maximum limits that are allowed by the
field type would be used for domain. In other words, if a
30 character string type is given to the field than a domain
composed of all the 30 characters would be used (in case
that the NOT NULL condition isn't determined in the
schema) for that field. Table 2 shows the domains that are
used for default domain (di_default). The domains for the
sub-values that are not listed on the Table would be

used for

applied in accordance with the properties of the database.

If the Domam-identifier property 1s identified with the
value of di-mntellegent, then a new domain would be
determined by using the information obtained following
the control of pre-stored data. If the field in question is a
numeric type than the smallest and greatest numerical
values entered in that field will be determined by runming
SQL sentence like the below one:

Select min (attribute name), max (attribute name) From
table-name

The mimmum and maximum values that are obtained
through the queries would be used as domain for that
field. The digital value that 1s entered by the application
software user 1s controlled by the domain controller which
15 1n the event handler section by using the identified
domain. The values that are not between the intervals will
be identified as error and an error message would be given
on_exit event. However, in some cases (especially at the
initial stage of data editing to the tables) it is possible to
edit values out of the range of domain without any error
message. The application asks for acceptance for each
value that lies out of the range of domain. As a result of
this acceptance, the domain will be changed as to include

94

the value edited. Following this operation of domain
change, the new set will be saved in the memory address
that is same with the local address of domains. Sending
the domain changes to all clients and updating the
memories in the Internet or ntranet environments will be
carried out with a data dictionary work over the database.

If the field mn question is an alpha-mumeric, then the
domam 1dentification process would show differences
through numerical fields. In tlhis case, imtially the
character size of the attribute will be determined by
obtaining the table schema. Thern if the application is
executed for the first time after tlus process than the
operation to be done is to constitute field character or
string pool. The pool, which will include all characters or
strings that could be edited to that field, is located in a
memory that is belonging to that field. In order to
determine the pool, a random reading of a 300 string will
be used for sampling. And, the character pool that is
obtained as a result of sampling will be used for the
evaluation of new data that will be entered.

Human name edit fields” domamn could be given as an
example of this pool system. It will be possible m this way
to prevent wrong spelled names by gathering the unique
names in the pool. Entering spelled wrong names 1s a very
common mistake. The wrong entering of the name Michael
as Micheal could be seen as a simple misspelling of a
word but nonetheless it could cause very important
problems. Preventing such misspellings would be very
important both for decreasing the database traffic (since
errors requires fixation) and increasing the consistency
of the database.

What 1s important here 1s to apply constraints as
successful as it can be. This simple system that 1s used
for constituting character domain could be made nto a
more useful system by supporting it with developed
neuron-network applications. Error control system that 1s
used in numerical fields could also be used here to
prevent entrance of erroneous characters by informing
with error messages. If the error message is still given
despite there is no erroneous entrance, then the
characters that is perceived by the system would be
added to the character pool in order to prevent further
eITOT INessages.

J. Applied Sci., 7 (1): 91-97, 2007

Event handler: Another part of the object is event
handler. This part is composed of three parts which are
dependent on key eveni handler unit. In this part key
event handler, firsily sends the character of the pressed
button to the type controller by conirolling each key
event pressed on the keyboard and provides type
gensitivity to that character to be controlled. If there is an
error in the results of control process, error handler
causes an internal exception error. Having been evaluated
by key event handler, this error is sent to the field. Ifthe
error is a fatal error like an alpha-numerical character
pressed in numerical fields, key handler without sending
an error message or an information message to the user,
causes the pressed key to be zero and to be deleted from
the. Tn other words, the value of the key pressed by the
user is not written to the field, thus preventing entry of
the character, the field is provided to be filled orderly field
(this working iz same with mask-edit field developed by
Borland, Microsoft, etc.,.

To exit from the field, the system calls the on-exit
event. This eveni provides the domain controller to
operate automatically and the data edited to the field to be
controlled by the domain controller. If an error occurs at
the result of the control, the error message is sent to the
user by the error handler. When the user closes the
message appeared, control is again passed to key event
handler unit in order to correct the erroneous field. If the
user declares that the entered value is not false when error
message appeared, an automatic approval message is sent
by the object. If this approval message is confirmed,
through including the value which is entered new and did
not take place in domain before, the object provides the
control to pass to destructor unit for its exit from the field.

Destructor: This part is the last part which is used in the
course of exit from the field. Field destructor unit which is
one of the three units of this part is used to notify the

DynaDBEdit Editor

DB Field

SampleConnd D0 bl
Table Mame....... |Dbieclives hd

Conrection Field Type

Integer s

Curent Magk...... _|ﬂ9

FieldName.......|BEHANVOR_COUNT » Cutrent Domain.. [1].129]
Descirptian...... ____ii\"lammum behavior count in
Domain Check |acoordance with an
|nh echive
I
Domain Identifier ..{dl_lnlalegeﬂl i

=

X |

Damain Lpdating i.Yes

Alow Emor........... .‘.ND

Tast ‘ Ok ‘ Carnicel |

Fig. 3: Field property editor of DynaDBEdit component

95

object ofthe closure of the field and to destruct the places
separated for the object in the memory. Then, field
updating unit provides eniry of the information to the
necessary part of the database. Lastly, domain updating
unit, by renewing the domain in accordance with the last
edited walue, stores new domain information in the
appropriate memory area.

DynaDBEdit component: DynaDBEdit objectis developed
as to allow identification and use in different application
development tools by means of a dynamic link library.
DynaDBEdit component is a component developed on
Delphi, C++ VB, C# application and development means

by making use of this library.
The component can also use data dictionary
information. The component performs database

connection by making use of connection objects which
take place on data module dependent on form. Figure 3.
indicates the type editor belonging to the component.
After the component is placed on the form, by using the
editor it is possible to make changes on database
connection and field information. Characteristics of the
component (owing to characteristics of the object) can
alzo be changed in run-time. Thus, in case of an online
change that can be made on the field, the component can
be updated without intermpting operation of form.

RESULTS

Here, data and experimental results obtained during
the test of the application software developed with the
use of component. Table 3 shows the test environment
variables.

Test software is executed without an edit field
domain control (di-none) and by using normal control
(di-default) and the developed method (di-intellegent).

Text Inierger Double Boolean Daic Char
Attrbint type

Fig. 4: Average connection time in accordance with data
types

J. Applied Sci., 7 (1): 91-97, 2007

Table 3: Test environment and descriptions

Test environment.

Description

Hardware
Server

Clients
Saftware

Operating system

DBMS

RAD.

DB connection tool

DB

Total number of tables in
DB

Total tuple count

Avg, attribute count in a
Table

Test filed types

Data

Test Connection retry count
Total count of record
entered

Number of proper entrance

Number of improper entrance

IBM Pentium IV 3 GHz
15xIBM 8424-7TBG Think

Centre Pentium TV 3G
Windows 2003 Server, Windows

XP Professional

Microsoft SQL Server 2000
Borland Delphi

ADO

Student Database

18
360 000

16

Text, Integer, Double, Boolean,
Date, Char

40

9000 (600%15)
8100 (90%%)
900 (109%)

Table 4: Results of proper and improper data input test

Number of record Field correction duration (normal)” Field correction duration (dynadbedit) Difterence (%)
8 100 (proper) 192 min 196 min -2

900 (improper) 69 min 24 min 187.5

9 000 (total) 261 min 220 min 18.6°
di_none

indicates average time spent for the necessary controls
carried out in accordance with the fields during the
establishment of database commection at the
moment of execution.

nitial

The connection elapsed times indicated n Fig. 4.
with the developed method, are approximately three times
more than others. However, in this condition, time
consumption occur only one and in the first moments
of the execution process of the software and running
period does not affect this time so much. Although use
of the component seems time consuming, because
actual time spend in application software occurs during
run-time, this time consumption is in a level that can be
1gnored.

Table 4 mdicates the results of 8100 proper, 900
improper, a total of 9000 entry inserting and updating test
process performed on the fields by 15 person test team.

In Table 4, in the conditions that DynaDBEdit
component 1s not used in application software and proper
entries are edited to the domain, there is not a gain of time.
Nevertheless, in case of improper data edition or
correction, there 1s, %187.6 saving 1n time because of the
duration needed for entry rejection by the software and
reaction lengths of the users to approve and detect the

96

errors. Total time saving is calculated as %018.6. Database
domain errors occurred in the course of data entrance will
be removed and motivation of the users will be affected in
a positive manner.

CONCLUSIONS

This study, which is made in addition to the studies
made on database applications, aims to prevent the
necessity to recollect application software due to the
change that will be made on attributes of tables. In
addition, 1n order to ensure data coherency, to maintain
database integrity and to avert time loss due to correction
of the errors, an edit field (TextBox) object and component
1s presented.

Tt is observed that use of DynaDBEdit made easier
the control of the data edited i application software edit
fields by the users. Furthermore, prevention of false value
entrance of data 15 a significant gain mn terms of system
integrity and consistency. There has been a relative
improvement and acceleration in data entrance speed
and through this object which can be used by
application developers, application and improvement
process will get easier.

J. Applied Sci., 7 (1): 91-97, 2007

Updating the domains and renewing server
mformation m order for DynaDBEdit field to be used in
distributed databases can be planned as a future study.
Easy use of the information belonging to the field and
data through developed data dictionary can be though as
a future study as well.

REFERENCES

Active, Up, 2006. Masked TextBox. hitp:/Arww. activeup.
com/products/components/activeinput/maskedtext
box. aspx

Castano, S., 1998.
Techniques and applications. Acm transactions on
database systems, pp: 23-286.

Cheung, KH., K.Y. Yip, A. Smith, R. deKmnikker,
A, Masiar and M. Gerstemn, 2005. YeastHub: A
semantic web use case for mtegrating data m the life
sciences domain. Bioinformatics, 21: 185-196.

Chua, CEH., R HL. Chiang and E.P. Lim, 2003. Instance-
based attribute 1dentification in database integration.
The VLDB I, 12: 228-243,

De Vries, D. and J.F. Roddick, 2004. Facilitating Database
Attribute Domain Evolution Using Mesodata,
Wang S. et al. (Eds.): ER Workshops 2004, Lecture
Notes m Computer Sci. Springer-Verlag Berlin
Heidelberg, pp: 429-440.

Ducrou, J., B. Wormuth and P. Eklund, 2005. Dynamic

Conceptual schema analysis:

i

Schema Navigation Using Formal Concept
Analysis. DaWaK 2005, Lecture Notes 1in
Computer Science. Springer Verlag Berlin

Heidelberg, pp: 398-407.
Fritsch, C. and B. Renz, 2005. Four mechanisms for
adaptable systems a meta-level approach to building

a software product line. Software Process
Improvement Practice, 10: 103-124.
Gunopulos, D., G. Kollios, V.J. Tsotras and

C. Domemcom, 2005. Selectivity estimators for
multidimensional range queries over real attributes.
The VLDB I, 14: 137-154.

Guruge, D.B. and R.T. Stonier, 2006. Intelligent document
filter for the Internet, Data Minmg: Theory,
Methodology Tecmiques, ans Applications, Lecture
Notes in Artificial Intelegence vol. 3755. Springer-
Verlag Berlin Heidelberg, pp: 161-175.

97

Hilderman, R.J., H.J. Hamilton and N. Cercone, 1999. Data
mining large databases
generalization graphs. I. Intelligent Inform. Sys.,
13:195-234.

Hull, R., 1986. Relative information capacity of simple
relational database schemata. Siam J. Computing,
15: 856.

Kambur, D., D. Becarevic and M. Roantree, 2003. An
Object Model Interface for Supporting Method
Storage. In Proc. 7th East European Conf. Advances
m Databases and Information Systems ADBIS.

Magkanaraki, A., S. Alexaki, V. Christophides and
D. Plexousakis, 2002. Benchmarking RDF schemas for
the Semantic Web. Semantic Web-ISWC, Lecture
Notes in Computer Science Vol.2342. Springer-Verlag
Berlin Heidelberg, pp: 132-146.

Miller, R.T., 1994, Schema quivalence: Tn heterogeneous

m using domain

systems-bridging theory and practice. Inform. Sys.,
pp: 19-3.

Mungnirun, K., 2006, NPA database filter guide.
Information system for neuronal pattern analysis.
http: /soma.npa.uine.edu/isnpa/filter/filter html.

Oommen, BJ. and M. Thiyagarajah, 1999. On
Benchmarking Attribute Cardinality Maps for
Database Systems Using the TPC-D
Specifications. Bench-Capon, T., G . Soda and
AM. Tjoa (Eds.): DEXA’99, Lecture Notes in
Computer Science Vol.1677. Springer-Verlag Berlin
Heidelberg, pp: 292-301.

Raghavan, G., 2002. Improving Software Quality in
Product Families through Systematic Reeng meering.
Kontio J. and R. Conradi (Eds.): ECSQ, 2002, Lecture
Notes i Computer Science Vol. 2349, Springer-Verlag
Berlin Heidelberg, pp: 90-99.

Sjoberg, D., 1993, Quantifying Schema Evolution.
Information and Software Technol., pp: 35-35.

Steidl, T., 2001. Downhole data dictionary and data
formatting requirements. Invited Workshop on
Archiving and Web Dissemination of Geotechnical
Data, October, pp: 169-188.

Weber, G., 2002. Semantics of form-oriented analysis.
Ph.D Thesis. Am. Fachbereich Mathematik und
Informatik der Freien Universitat Berlin,

	JAS.pdf
	Page 1

