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Abstract: Missing data are a part of almost all research and it must be decided how to deal with it from time to
time. Missing data creates several problems in many applications which depend on good access to accurated
data. Conventional methods for missing data, like listwise deletion or regression imputation, are prone to three
serious problems: Tnefficient use of the available information, leading to low power and Type IT errors. Biased
estimates of standard errors, leading to incorrect p-values. Biased parameter estimates, due to failure to adjust
for selectivity in missing data. In this study, we propose a new algorithm to predict missing values of a given

time series using Radial Basis Functions.
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INTRODUCTION

Time series data are used to represent many real
world phenomenon. For various reasons, a time series
database may have some missing data. Traditional
mterpolation or estimation methods uvsually become
invalid when the observation interval of the missing data
is not small (Hong and Chen, 2003).

The methods of handling missing data are directly
the that
incompleteness. These mechanisms fall into three classes
(Sentas and Angelis, 2005; Little and Rubin, 2002).

related to mechanisms caused the

Missing Completely at Random (MCAR). The
missing values in a variable are unrelated to the
values of any other variables, whether missing or
valid.

Non-Ignorable Missingness (NIM): The probability
of having missing values in a variable depends on
the variable itself.

Missing at Random (MAR): This can be considered
as an intermediate situation between MCAR and
NIM. The probability of having missing values, does
not depend on the variable itself but on the values of
some other variable.

Missing data techniques are given in Little and Rubin
(2002). They can be listed as: Listwise deletion, mean
umputation, regression imputation and expectation
maximization. Details can be obtained from Little and
Rubin (2002).

Many recent publications appeared in literature
related to dealing missing data.
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Choi and Kim (2002) presented a physics-based
approach  for automatically reconstructing three
dimensional shapes in a robust and proper manner from
partially missing data.

Tang and Hung (2006) have proposed an algorithm
to estimate projective shape, projective depths and
missing data iteratively.

Yemez and Wetherilt (2007) presented a hybrid
surface reconstruction method that fuses geometrical
information acquired from silhouette images and optical
triangulation.

Golyandina and Osipov (2007) have proposed a
method of fillng m the missing data and applied to time
series of finite rank.

Heintzmann (2007) introduced a novel way of
measuring the regain of out-of-band
during maximum likelihood deconvolution and applied
to various situations.

information

Formal representation of missing data: Original data
matrix D=(dy)1=1,2,3...1,j =1,2,... k contains time series
data where d, is the value of variable d,for case I.
When there are missing data, the missing data

indicator matrix M = {(m;) can be defined as below:

if m; = 1 then d, is missing

if m; = O then d, is present

(Sentas and Angelis, 2005).

Radial basis functions for time series forecasting: An
RBF network consists of 3 layers: an input layer, a hidden
layer and an output layer. A typical RBF network i1s
shown in Fig. 1.

Mathematically, the network output for linear output
nodes can be expressed as below:
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Fig. 1: Typical RBF network
v (X) = iwqu)] (HX - XJH)J” Wi
i

Where x 1s the input vector with elements x, (where I 1s the
dimension of the input vector),

X; is the vector to determine the center of the basis
function @, with elements X;,w, "s are the weights and
Wy, 18 the bias (Harpham and Dawsocn, 2006). The basis
function @, (-) provides the nonlinearity. The most used
basis functions are Gaussian and multiquadratic functions

(Harpham and Dawsocn, 2006).

Calculating the optimal values of weights: A very
important property of the RBF Network is that it is a
linearly weigthed network i the sense that the output 1s
a linear combination of m radial basis functions, written
as below:

f(x)= i wld®x)

(Duy and Chong, 2003)

The main problem is to find the unknown weights
iw" } | _ . For this purpose, the general least squares
principle can be used to mimmize the sum squared error:

SSE = Zn:[y@ —fx®)]
1=1

With respect to the weights of £, resulting i a set of m
simultaneous lnear algebraic equations in the m unknown
weights

(B'B)w =By
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Fig. 2: Finding the predicted value v,

where

(D(l)(x(l)) (D(Z)(X(l)) (Diml (X(l))
B (D(l) (X(Z)) (D(Z)(X(Z)) (D(m) (X(Z))
o (X(n)) OIS (X(n)) (Diml (X(n) )

@

w=[w" w9 Wy =y Y9, T

In the special case where n = m the resultant system 1s
just
Bw=y (Duy and Chong, 2003)

The output y(x) represents the next value of y in time t
taking input values x,, %, .....x, that represent the previous
function values set of the time series with values y,,,
Via S0, X, corresponds to v, x,, comresponds to
V.. etc. as in Fig. 2.

Reconstruction of data series by radial basis functions:
a new algorithm: The following algorithm 15 proposed in
this work to find the values of missing data.

»  Remove the 20% of the original data from the data
set. Divide the data set mto segments so that each
segment contains some missing data:

Missing data

Missing data
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Use the complete data of segment; to find an artificial
time series equation with an RBF network that means
finding the weights in the RBF approximation.
Calculate the error in each segment according to the
following formula:

g =yx)-r

Where e/ is the error value in the x; point on the j*
segiment.

*  Calculate the sum squared errors in each segment in
each pass of the algorithm.

SSE, = Zn:i(ej)z

j=1 1=1

where k 13 the number of the pass.
+  Replace the missing data with the predicted values in
each segment in the pass m where SEE, is the
minimum value of SSE,. Stop the algorithm.

SIMULATION RESULTS

Several simulation runs were carried out in a
computer environment to find the optimal values of
parameters in radial basis functions like width & and
centers (X;'s) to obtain good predictions for the missing
data in the time series.

Figure 3 shows the results of the first simulation run.

In this run, the first 40 data items were used to predict
the next 8 data items that was considered missing data
and the results were compared with the real data. Real
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Fig. 3: Gaussian Function sigma = 0.93 and 18 neurons in

the hidden layer
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Fig. 5. Gaussian Function sigma =1 and 18 neurons in the
hidden layer for the last 40 data

data values are represented with symbol + and predicted
values are represented with symbol o.

In Fig. 4, similar experiment was carried out with
8 =1 for a Gaussian function and better results
were obtained.

Figure 5 shows, the results of the sumilar experiment
for the last 40 data items for a Gaussian function.
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CONCLUSIONS

In this study, I proposed a new algorithm to predict
missing values of a given time series using Radial Basis
Functions. Radial Basis Functions provide a good way to
predict the values of missing data in a time series. In this
study, a monthly data log of a bank was used to carry out
the simulation experiments. The data log file consisted of
324 data items. Thus file was divided to small parts with 48
data items for the first 6 parts and 36 data items for the last
part. The last 20% of the data for each part was removed
and these removed data items were predicted using RBF’s
and the 80% of the data items for each part. For some
optimal parameters of the RBF’s, very good predictions
are obtained for the missing data.
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