

Journal of Applied Sciences

ISSN 1812-5654

On Non-archimedean λ-Limited Spaces

Zeyad Rizq Safi Department of Mathematics, Al-Aqsa University, P.O. Box 4051 Gaza, Palestine,

Abstract: In this research we study some types of limited sets and operators on non-archimedean locally convex spaces. We generate the concept of limited spaces into λ -limited spaces and study the relation between λ -limited spaces and λ -semiMontel spaces. We show that the non-archimedean locally convex space E is λ -limited space if and only if E is a space of type (S_{λ}) .

Key words:Non-archimedean locally convex spaces, compactoid, limited sets, semi-montel spaces, kolmogrove diameters

INTRODUCTION

In this research we study locally convex spaces over a complete valued scalar field K that are not isomorphic to R or C. We treat some theorems about compact sets and operators in functional analysis over R or C and discussion whether or not they remain valid in non-archimedean functional analysis. We study some types of limited sets and operators which called λ -limited sets and operators in non- archimedean locally convex spaces and we use the Kolmogrove diameters to obtain results resembling previously known properties of limited sets. We generate the concept of limited spaces into λ -limited spaces and study the relation between λ -limited spaces and λ -semi-Montel spaces.

PRELIMINARIES

Let K be a field. A non-Archimedean valuation on K is a function $|\cdot|: K \to [0,\infty)$ such that for all $\alpha, \beta \in K$ it satisfies: $|\alpha| = 0$ if and only if $\alpha = 0$; $|\alpha\beta| = |\alpha\|\beta|$ and $|\alpha+\beta| \le \max\{|\alpha|,|\beta|\}$. Note that the last condition separates the absolute value on R or C from all other valuations. The mapping $(\lambda,\mu) \to |\lambda-\mu|$ is a metric on K making K into a topological field. We will call the valuation is dense if the set $|K| \setminus \{0\}$, where $|K| = \{|\lambda|: \lambda \in K\}$, is dense in $(0,\infty)$.

Let E be a vector space over the field K. A non-archimedean seminorm on E is a seminorm which verifies the strong triangle inequality: $\|a+b\| \le \max\{\|a,b\|\}$ for all $a,b \in E$. If in addition $\|x\| = 0 \Rightarrow x = 0$, then we say that $\|.\|$ is a non-archimedean norm on E. The pair $(E, \|.\|)$ is called a non-archimedean normed space.

Throughout this study K will stand for a complete non- archimedean valued field, whose valuation is non-trivial. The collection of all continuous non-archimedean seminorm on a vector space E over K will be denoted by cs (E). For p \in cs (E) and r>0, B $_p$ (0, r) will be the set $\{x\in E: p(x)\le r\}$. L (E, F) will be the vector space of all continuous linear operators from E into F. The non-

archimedean normed space E is said to be of countable type if, there exists a countable subset S of E, such that the subspace [S] spanned by S is dense in E.

For a continuous non-archimedean seminorms p on E we put $E_p = E/\ker p$ and denoted by π_p the canonical surjection π_p : $E \to E_p$. Then E_p is a non-archimedean normed space for the non-archimedean norm $\|\cdot\|_p$ defined by $\|\pi_p(x)\|_p = p(x)$, $x \in E$. By De Grande-De Kimpe and Perez-Garcia (1994) is a space of countable type.

The following sequence spaces will be need:

- $c_0(K) = \{(\lambda_n): \lambda_n \in K, \lim_n (\lambda_n) = 0 \}.$
- $l_{\infty}(K) = \{(\lambda_n): \lambda_n \in K, (\lambda_n) \text{ is bounded}\}.$

$$\iota_{1}(K)=\{(\lambda_{n}{\in}K,\sum_{n=1}^{\infty}\mid\lambda_{n}\mid\leq\infty\}.$$

$$\bullet \qquad (S) = \left\{ (\lambda_{_{n}}) \colon \lambda_{_{n}} \in k \underset{_{n}}{sup} \; n^{\alpha} |\; \lambda_{_{n}} \mid \leq \infty \; \forall \; \alpha > 0 \right\}.$$

$$\bullet \ \ \Lambda \ (\alpha) = \{(\alpha_n : \lambda_n \in K, \, \sup_n R^{\alpha_n} \ |\lambda_n| < \!\!\! \infty \ \forall R \!\!> \!\! 0, \, \alpha_1 \leq , \, \leq_2 \ldots \}.$$

• (R) =
$$\{(\lambda_n): \lambda_n \in K, \lim_n \sqrt[n]{|\lambda_n|} = 0\}.$$

Definition 1: A non-Archimedean sequence ideal λ on the valued field K is a subset of the space $\iota_{\infty}(K)$ satisfying the following conditions:

- $e_i \in \lambda$ where $e_i = (0,0,...,1,....)$ the one in the ith place.
- If $x_1, x_2 \in \lambda$, then $x_1 + x_2 \in \lambda$.
- If $y \in l_{\infty}(K)$ and $x \in \lambda$, then $x, y \in \lambda$.
- If the sequence $\mathbf{x} = (\mathbf{x}_0, \mathbf{x}_1, \dots) \in \lambda$, then $(\mathbf{x}_0, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_1, \dots) \in \lambda$.

Note that the sequence spaces, $\iota_{\infty}(K)$, $c_0(K)$, (S), (R) and $\Lambda(\alpha)$ are examples of sequence ideals (Pietch, 1980).

For a bounded subset B of a locally convex space E over K, a $p \in cs$ (E) and a non-negative integer n, the nth

Kolmogrove diameter $\delta_{n,p}(B)$ (or $\delta_n(B,B_p(0,1))$) of B with respect to p is the infimum of all $|\mu|$, $\mu \in K$, for which there exists a subspace F of E with dim (F) $\leq n$, such that $A \subset F + \mu B_p(0,1)$ (Katasars and Perez-Garcia, 1997). These nth Kolmogrove diameters satisfy the following properties:

Proposition 1:

- $\delta_{0,p}(B) \ge \delta_{1,p}(B) \ge \delta_{2,q}(B) \ge \dots \ge 0$. for all $p \in cs$ (E).
- If $B_1 \subseteq B$ and $p \le q$, then $\delta_{n,p}(B_1) \le \delta_{n,q}(B)$.
- If $T \in L(E, F)$, then for all $p \in cs(F)$ there exists $q \in cs(E)$ such that $\delta_{n,p}(T(B)) \le \delta_{n,q}(B)$.
- If $p' \ge p$, then $\delta_n(\pi_p(B_q(0,1)), \pi_p(B_p(0,1))) = \delta_n(B_q(0,1), B_p(0,1))$ (Dubinsky, 1979; Jarchow, 1981; Safi, 2006).

λ-LIMITED SETS

Definition 2: Let E, F be locally convex spaces over K, then

 A subset B of E is called compactoid if for every zero-neighborhood U in E there exists a finite set A⊂E such that B⊂co (A)+U, where co (A) is the absolutely convex hull of A.

An operator T∈L (E, F) is called compactoid if there exists a zero-neighborhood U in E such that T (U) is compactoid in F (De Grande-De Kimpe *et al.*, 1995). Katasars and C. Perez-Garcia (1997) used the Kolmogrove diameters to give the following equivalent definition:

- The bounded subset B of a locally convex space E over K is called compactoid if and only if (S_{np}(B)^o_{n=1})∈c₀ (K) for all p∈cs (E).
- A bounded subset B of E is called limited in E if and only if for each continuous linear map T from E to c₀ (k), T (B) is compactoid in c₀ (K).

An operator $T \in L$ (E, F) is called limited if there exists a zero-neighborhood E in U such that T (U) is limited in F. We will denote by lim (E, F) the vector space of all limited operators from E to F ((De Grande-De Kimpe *et al.*, 1995). Parallel to this definitions we define the following:

Definition 3: Let E, F be locally convex spaces over K, then

- A subset B of E is called λ-compactoid if we replace c_o (K) in (1)
- by the sequence ideal.

An operator $T \in L(E, F)$ is called λ -compactoid if there exists a zero-neighborhood U in E such that T(U) is λ -compactoid in F. We will denoted by λ -C(E,F) the space of all λ -compactoid operators from E into F.

 A bounded subset B of E is called λ-limited in E if and only if for each continuous linear map T from E to c₀ (K), T (B) is λ-compactoid in c₀ (K).

An operator $T \in L(E,F)$ is called λ -limited if there exists a zero-neighborhood U in E such that T(U) is λ -limited in F. We will denoted by (λ) -lim (E,F) the space of all λ -limited operators from E into F.

Notes:

- If dim (E) = n, then every bounded subset of E is λ-compactoid.
- If

$$D = \left\{ (\lambda_n) : \lambda_n \in K, \sum_{n=1}^{\infty} \mid \lambda_n \mid 2^n \le 1 \right\} \text{ and }$$

$$B = \left\{ (\lambda_n) : \lambda_n \in K, \sum_{n=1}^{\infty} |\lambda_n| \ n \leq 1 \right\}$$

are two subsets of ι_1 (K), then according to Pietch (1972) we have

$$\delta_n(D, B_{l_1}) = \frac{1}{2^n}$$

and

$$\delta_n(B,B_{l_1}) = \frac{1}{n}$$

where B_{11} is the closed unit ball in ι_{1} . Hence D is $c_{0}(K)$ -compactoid and (S)-compactoid, but not (R)-compactoid and B is $c_{0}(K)$ -compactoid but not (S)-compactoid.

Proposition 2: Let E,F be locally convex spaces over K, then

- i) Every λ-compactoid subset of E is λ-limited in E.
- ii) If B is λ -limited in E and T \in L (E, F), then T (B) is λ -limited in F.
- iii) If B is λ -limited in E and D \subset B, then D is λ -limited in E.
- iv) If A is λ -limited, then \bar{A} is λ -limited.
- v) If A, B⊂E are λ-limited in E, then A+B is λ-limited in E.
- vi) The product of any finite number of λ -limited sets is λ -limited.
- vii) Let M be a subspace of E and B⊂M. If B is λ-limited in M, then B is λ-limited in E (De-Grande-De Kimpe *et al.*, 1995).

Proof:

- Let B be any λ-compactoid subset of E and let T∈L
 (E, c₀(K)). It follows from property (iii) of proposition
 (1) that for all p∈cs(F) there exists q∈cs (E) such that δ_{n,p} (T (B))≤δ_{n,q}(B) and so T (B) is λ-compactoid in c₀ (K). Therefore B is λ-limited in E.
- Suppose B is λ-limited in E and T∈L (E, F). Let G∈L (F,c₀ (K)), then G₀T∈L (E, c₀(K)). It follows that G (T(B)) is λ-compactoid in c₀(K) and so T(B) is λ-limited in E.
- Let D⊂B and let T∈L (E, F). Since T(D)⊂T (B), then by property (ii), (iii) of proposition (1) it follows that δ_{n,p} (T(D))≤δ_{n,p} for all p∈cs (F). Since B is λ-limited in E, then T (D) is λ-compactoid in c₀ (K) and this complete the proof.
- From definition of $\delta_{n,p}$ (A), if $\epsilon > 0$ there exist a subspace F of E with dim(F) $\leq n$ and $\mu \in K$ such that $|\mu| \leq \delta_{n,p}(A) + \epsilon$, $A \subseteq \mu B_p(0,1) + F$. It follows that $\bar{A} \subseteq \mu B_p$ (0,1)+F and so $\delta_{n,p}$ (A) $\leq |\mu| \leq \delta_{n,p}(A) + \epsilon$. Since $\epsilon > 0$ is an arbitrary, we deduce that $\delta_{n,p}$ (\bar{A}) $\leq \delta_{n,p}$ (A). That is, if A is λ -compactoid in E, then \bar{A} is also λ -compactoid in E. Now, let $T \in L$ (E,c₀(K)). Since A is λ -limited it follows that T(A) is λ -compactoid and hence $T(A) \subseteq T(A)$ is λ -compactoid. Since, $T(A) \subseteq T(A)$ it follows that $T(\bar{A})$ is λ -compactoid.
- Let T∈L (E,c₀) Since A, B are λ-limited, then T(A), T(B) are λ-compactoid. Since, T(A+B)⊆T(A)+T(B), it follows by Safi (2006) that T (A+B) is λ-compactoid in c₀(K) and so A+B is λ-limited in E.
- Let D_i be any λ -limited set in E_i , i=1,2,....., n and let $E=E_1\times E_2\times....\times E_n$, $T\in L(E_i,c_0(K))$. Now If $\pi_i\colon E_i\neg E$ is conical inclusion, then the operator $T_i=T\circ\pi_i\in L(E_i,c_0(K))$ and so T_i (D_i) is λ -compactoid in $c_0(K)$. Since,

$$T(\prod_{i=1}^{n} D_{i} = T_{1}(D_{1}) + T_{2}(D_{2}) + \dots + T_{n}(D_{n}),$$

then

$$T(\prod_{i=1}^n D_i)$$

is λ-compactiod (Safi, 2006). Therefore

$$\prod_{i=1}^{n} D_{i}$$

is λ -limited (proposition 2.i).

Let M be a subspace of E and let B be λ-limited M. If
T∈L (E, F), then the restriction operator T|M∈L
(M, c₀(K)). Since T|M∈L(M,c₀(K)) is λ-compactoid in
c₀ (K) it follows that B is λ-limited in E.

Note: If $\lambda = c_0(K)$, then the unit ball ι_{∞} of is λ -limited, but not λ -compactoid (De Grande-Dekimpe and Perez-Garcia, 1994).

Definition 4: A locally convex space over K is called λ -Gelfand-Philips space (λ -GP-space in short) if every λ -limited set in E is λ -compactoid. (De Grande-Dekimpe and Perez-Garcia, 1994).

Remark: c_0 (K) is λ -Gp space, for any sequence ideal λ (and hence any non-archimedean normed space of countable type (Van Rooij, 1978).

To see that let A be any λ -limited set in c_0 (K). Since the identity operator $I \in L$ ($c_0(K)$, $c_0(K)$), then I(A) = A is λ -compactoid.

λ-LIMITED SPACES

De Ggrande-de Kimpe and Perez-Garia (1994) give the following definition:

The locally convex space E over K is called limited space if L (E, F) = \lim (E, F) for all non-archimedean normed space F.

Definition 5: We say that the locally convex space E over K is λ -limited space if L $(E,F) = \lambda$ -lim (E,F) for all non-archimedean normed spaces F.

Notes:

- If λ = c₀(K), then the concepts of λ-limited space coincide with the limited spaces and if the valuation K is dense. Then t_∞(K) is λ-limited spaces. Since L(c₀ (K), c₀ (K))≠λ-C(c₀ (K), c₀ (K))⊆λ-lim (c₀ (K), c₀ (K)), then c₀ (K) is not λ-limited spaces (De Grande-De Kimpe et al., 1995).
- If E is a non-archimedean normed space, then the closed unit ball of E, B_E is λ -limited if L (E, c_0 (K)) = λ -C (E, c_0 (K)).

Theorem 1: If $L(E, F) = \lambda$ -lim (E, F) for any locally convex spaces E, F over K and M is a closed subspace of E then. $L(E/M, F) = \lambda$ -lim (E/M, F).

Proof: Let M be a closed subspace of E and T \in L (E/M, F). If π : E \rightarrow E/M is the quotient map, then $T\circ\pi\in$ L (E, F). Since L (E, F) = λ -lim (E, F), there exists a zero-neighbourhood U in E such that ($T\circ\pi(U) = T(\pi(U))$ is λ -limited. Since $\pi(U)$ is a zero-neighbourhood in E/M, then $T\in\lambda$ -lim (E/M, F).

Proposition 3: Let F, E_1 , E_2 , be any locally convex spaces over K:

If L (E_i, F) = λ-lim (E_i, F) for each i∈N, then.

$$L(\prod_{i=1}^{\infty} E_i, F) = \lambda - \lim(\prod_{i=1}^{\infty} E_i, F)$$

• If L (F, E_i) = λ -lim (F, E_i) for each i \in I, I is finite, then

$$L(F, \prod_{i \in I} E_i) = \lambda - \lim(F, \prod_{i \in I} E_i)$$

• If E_i is λ -GP-space and $L(F, E_i) = \lambda$ -lim (F, E_i) for each $i \in N$, then

$$L(F, \prod_{i=1}^{\infty} E_i) = \lambda - \lim(F, \prod_{i=1}^{\infty} E_i)$$

(Van Rooij, 1978).

Proof:

Let

$$E = \prod_{i=1}^{\infty} E_i$$

and let $T \in (E, F)$. Then T is bounded on some zero-neighborhood W of E. This neighborhood can be taken in the form

$$W = \prod_{i=1}^{\infty} U_i$$

where U_i is a zero-neighborhood in E_i and the set $J=\{i\in N\colon U_i\neq E_i\}$ is finite. So we can assume that $E=E_1\times E_2\times\times E_n$ for some $n\in N$. Now for i=1,2,....,n, let $\pi_i\colon E_i\to E$ be the conical inclusion. Since the operator $T_i=T\circ\pi_i\in L$ (E_i,F) and L $(E_i,F)=\lambda$ -lim (E_i,F) , then there exists a zero-neighborhood V_i in E_i such that T_i (V_i) is λ -limited set in F, then $V=V\times V_2\times\times V_n$ is zero-neighborhood in E for which $T(V)=T_1(V_1)+T_2(V_2)+.....+T_n$ (V_n) is λ -limited set in F (proposition (2.v)). So, $T\in \lambda$ -lim (E,F).

• Let

$$T \in L(F, \prod_{i \in I} E_i)$$

I, is finite, and let P_i : $E \neg E_i$ be the canonical operator, then $P_i \circ T \in L$ (F, E_i) . Since L $(F, E_i) = \lambda$ -lim (F, E_i) , then $P_i \circ T$ is λ -limited operator. Thus, there exists a zero-neighborhood U in F such that $P_i \circ T$ $(U) = W_i$ is λ -limited set in E_i . It follows by proposition (2.vi)

$$\prod_{i\in I} W_i = T(U)$$

is λ -limited set in

$$\prod_{i\in I} E_i$$

and so T is λ -limited operator.

Let

$$T \in L(F, \prod_{i=1}^{\infty} E_i)$$

then like in part (ii) we can find a zero-neighborhood U in F such that $P_i \circ T$ (U) = W_i is λ -limited set in E_i for all $i \in N$. Since E_i is λ -GP-space, then W_i is λ -compactiod set in E_i . Now by Safi (2006)

$$\prod_{i=1}^{\infty} W_i = T(U)$$

is λ -compacted set and by proposition (2.i) T(U) is λ -limited set in

$$\prod_{i=1}^{\infty} E_i$$

Therefore

$$L(F, \prod_{i=1}^{\infty} E_i) = \lambda - \lim(F, \prod_{i=1}^{\infty} E_i)$$

Definition 6: A locally convex space E over K is said to be of type (S_{λ}) if for each $P \in cs(E)$ there exists $q \in cs(E)$ such that

$$(\delta_{n,q}^-(B_q(0,1),)_{n=0}^\infty\in\lambda$$

for each q'≥p) (Zahriuita, 1973).

Proposition 4: The space E is of type (S_{λ}) if and only if E is λ -limited space.

Proof: Sufficiency, let E be λ -limited space and let $p \in cs(E)$. Since $E_p = E/Ker p$ is a non-archimedean normed space and the canonical surjection

$$\pi_p: E \to E_p$$

is continuous, then π_p is $\lambda\text{--}$ limited operator, so there exists a neighborhood B_q $(0,\,1)$ in E such that π_p $(B_q\;(0,\,1)$ is $\lambda\text{--}$ limited in $E_p.$ Now since E_p is a non-archimedean normed space of countable type, then E_p is $\lambda\text{--}$ Gp-space and so $\pi_p\;(B_q\;(0,\,1)$ is $\lambda\text{--}$ compactoid set in $E_p,$ hence

$$(\delta_{n}(\pi_{n}(B_{\alpha}(0,1))\!,\,\pi_{n}(B_{h}(0,1)))_{n=0}^{\infty}\in\lambda$$

for each $h \in cs$ (E). Now if $p' \ge p$, then

$$(\delta_n(\pi_p(B_q(0,1))\!,\,\pi_p(B_{n^{'}}(0,1)))_{n=0}^\infty\in\lambda$$

and by proposition (1. iv) it follows that

$$(\delta_{\mathbf{n}}(B_{\mathbf{n}}(0,1), B_{\mathbf{n}'}(0,1))_{\mathbf{n}=0}^{\infty} \in \lambda$$

thus E is a space of type (S_1) .

Necessity: Let E be a space of type (S_{λ}) , F be an arbitrary non-archimedean normed space and $T \in L$ (E, F). Now for the closed unit ball B_F , there exists $p \in cs$ (E) such that $T(B_P(0,1)) \subset B_F$. Since E is a space of type (S_{λ}) , there exists $q \in cs$ (E) such that

$$(\delta_n(B_q(0,1),B_{p'}(0,1)))_{n=0}^{\infty}\in\lambda$$

for all p'≥q. It follows by proposition (1. (iii)) that

$$(\delta_{\mathbf{n}}(T(B_{\mathbf{n}}(0,1)),T(B_{\mathbf{n}'}(0,1))))_{\mathbf{n}=0}^{\infty} \in \lambda$$

for all $p' \! \ge \! p$. Now since, $T\left(B_p\left(0,1\right)\right) \! \subset \! T\left(B_q\left(0,1\right)\right) \! \le BF\right))$ then $\left(\boldsymbol{\delta}_n(T(B_q(0,1)), B_F)\right) \! \le \! \boldsymbol{\delta}\left(T(B_q(0,1)), T(B_q(0,1)), T\left(B_{p'}(0,1)\right)\right).$ Therefore $\left(\boldsymbol{\delta}_n\left(T\left(B_q\left(0,1\right)\right), B_F\right)\right) \! \in \! \lambda \text{ and so } T(B_q\left(0,1\right)) \text{ is } \lambda\text{-compactoid in } F \text{ and by proposition } (2.i) \text{ is } \lambda\text{-limited,}$ Thus T is $\lambda\text{-limited operator.}$

Definition 7: A locally convex space E over K is called λ -semi-Montel, if every bounded subset D of E is λ -compactoid.

Notes:

 Every finite dimensional normed space is λ-semi-Montel.

- If E is λ-Gp space such that every bounded subset of E is λ-limited, then E is λ-semi-Montel space.
- If Eλ-semi-Montel space, then every bounded subset of E is λ-limited.

Proposition 5:

- If E is λ-limited space, then every bounded set in E is λ-limited.
- If F is a locally convex space over K and L (E, F) = λ-lim (E, F) for every non-archimedean normed space E, then every bounded set in F is λ-limited.
- If F is λ-semi-Montel space, then L (E, F) = λ-lim (E, F) for every non-archimedean normed space E.
- If F is λ-Gp space and L (E, F) = λ-lim (E, F) for every non-archimedean normed space E, then F is λ-semi-Montel space.

Proof:

- Let A be any bounded subset of E and let T∈L (E, c₀ (k)). Since L (E,c₀ (K)) = λ-lim (E, c₀ (K)), then there exists a zero-neighborhood U in E such that T(U) is λ-limited in c₀(K). Since A is bounded, then there exists r∈K, |r|>0, such that A⊂rU and so T(A)⊂rT(U). It follows by proposition (2.iii) T(A) is λ-limited in c₀(K). Since c₀(K) is λ-Gp space, then T(A) is λ-compactoid and so A is λ-limited set in E.
- Suppose L (E, F) = λ-lim (E, F) for every non-archimedean normed space E. We shall show that every bounded set A in F is λ-limited. Since A is bounded set in F, then for each p∈cs (F) there exists m(p)∈K, |m(p)|>0 such that A⊂m(p) B₀ (0, 1). Now let,

$$q(y) = \sup \{ \frac{1}{|m(p)|} p(y) : p \in cs(F) \} \le 1, y \in A$$

Then q is a non-archimedean seminorm on A. If q(y)=0, then p(y)=0 for all $p{\in}s(F)$ and so y=0. Thus q is a non-archimedean norm. Now by E, we shall take the non-archimedean normed space of all $y{\in}F$ with $q(y){<}\infty$. If $B_E=\{y{\in}F: q(y){\leq}1\}$ is the closed unit ball of E, then $A{\subset}B_E$ and if the operator T equal to the identity imbedding of E into F, then $T{\in}L(E,F)$. Since $L(E,F)=\lambda$ -lim (E,F), then T is λ -limited operator. Thus $T(B_E)=B_E$ is λ -limited set in F and by proposition (2. iii) A is λ -limited set in F.

Let F be any λ-semi-Montel space, E be a non-archimedean normed space and T∈L (E, F). Since T is bounded, then T maps the unit ball B_E into E a bounded set T(B_E) in F and so T (B_E) is λ-compactoid set in F, hence T(B_E) is λ-limited set in F. Therefore T is λ-limited operator.

 It follows from part (2) and the fact that the space F is λ-Gp spaces.

Theorem 2: Let F, E be any locally convex spaces over K and let L (E, F) = λ -lim (E, F), then L (E₀, F₀) = λ -lim (E₀, F₀) for a complement linear subspace E₀ of E and subspace F₀ of F.

Proof: Let $T_0 \in L$ (E_0, F_0) and let $T \in L$ (E, F) defined by $T(x) = T_0$ where $x = x_0 + x_1, x_0 \in E_0$. Since L $(E, F) = \lambda$ -lim (E, F), then T is λ -limited operator and so there exists a zero-neighborhood U in E such that T(U) is λ -limited set. Since $U \cap E_0$ is zero-neighborhood in E_0 , then applying proposition (2.iii) we deduce that $T(U \cap E_0) = T_0$ $(U \cap E_0)$ is λ -limited and therefore T_0 is λ -limited operator.

Note: If the valuation on K is dense and $\lambda = c_0(K)$, then L $(\iota_{\infty}(K), \iota_{\infty}(K)) = \lambda$ -lim $(\iota_{\infty}(K), \iota_{\infty}(K))$ but L $(c_0(K), c_0(K)) \neq \lambda$ -lim $(c_0(K), c_0(K))$ (De Grande-De Kimpe *et al.*, 1995, Example (2.6.iv)).

REFERENCES

De Grande-De Kimpe, N. and C. Perez-Garcia, 1994. Non-archimedian GP-spaces, Bull. Belg. Math. Soc., 1: 99-105.

- De Grande-De Kimpe, N., A.Yu. Khrennikov and C. Perez-Garcia, 1995. Limited spaces, Ann. Math. Blaise Pascal, 2: 117-129.
- Dubinsky, E., 1979. The Structure of Nuclear Fréchet Spaces, Lecture Note in Math. Springer- Verlag, Berlin-Heidelberg, pp. 123.
- Jarchow, H., 1981. Locally Convex Spaces, B.G. Teubener, Stuttgart, pp. 231.
- Katasars, A.K. and C. Perez-Garcia, 1997. Λ_0 -nuclear operators and Λ_0 -nuclear spaces in p-adic analysis, Georgian Math. J., 1: 27-40.
- Pietch, A., 1972. Nuclear Locally Convex Spaces, Akademic, Verlin, Berlin, pp. 145.
- Pietch, A., 1980. Operator Ideals, North-Holland Publishing Company, Amsterdam, New York, Oxford, pp: 178.
- Safi, Z.R., 2006. Non-archimedian compactoid sets, Rajasthan Acad. Phys. Sci., 2: 143-152.
- Van Rooij, A.C.M., 1978. Non-archimedian Functional Analysis, Marcel Dekker, New Yourk.
- Zahriuita, V.P., 1973. On the isomorphism of Cartesian product of locally convex spaces, Studia Math., 46: 201-221.