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RTD Simulation Using Optical Model
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Abstract: In this study, a physic-based model for calculating incoherent current of Resonant Tunneling Diode
(RTD) has been introduced which 1s based on the meta-stable states of RTD. Also a physic-based model for
imaginary potential is introduced which has full position, bias, energy and temperature dependency of the
imaginary potential. By incorporating these two physic-based models, the conventional optical model becomes

a completely physic-based approach to RTD.
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INTRODUCTION

In recent years, advances m technologies such as
MBE have made it possible to fabricate very small devices
with dimensions comparable to the Debye’s length. As a
consequence of this dimensions, the I/'V
characteristics of such devices must be calculated by
quantum theories. Among these devices, there are
devices such as Resonant Tunnelling Diodes (RTD)
which due to long dwelling time of their electrons inside

small

the device, the scattering phenomena have a major rule in
their operation and as a consequence, a ballistic quantum
transport theory will not be adequate.

Unfortunately, the problem of quantum electron
transport 1n presence of scattering phenomena 1s a hard
problem and there is not yet an exact formulation for it. Tn
thus situatiory, a simple approximate formulation known as
optical model attracted much attention. In the optical
model, the effects of scattering phenomena are introduced
by an imaginary potential into the Schrédinger equation
(Schiff, 1968):

z

_h*quﬂr(VJriw)\p:Eq; (1)
2m

In this formula, V is the real and w 1s the imaginary
potential. This method has been used by many authors
for simulation of RTD. Some of them (Hu and Stapleton,
1993) have used it directly through the Schrédinger
equation as explained in the Eq. 1. Others have used it via
a path mtegral method (Zohta, 1990a, b, Zohta and Ezawa,
1992) or mn conjunction with the Febry-Perot resonator
(Furuya et al., 1994) or by transfer matrix or scattering
matrix method (Yuming, 1988, Zohta, 1993; Zohta and

Ezawa, 1992). All these approaches were successful and
ended into similar results but there are two ambiguities
common to all of them.

The first ambiguity is related to the amount of the
mmaginary potential that is needed in the calculations. The
second ambiguity 1s related to the incoherent current
which eventually flows through the device. The optical
model itself says nothing about these two problems and
we must use additional theories and models to clarify

thermn.

PHYSIC-BASED IMAGINARY
POTENTIAL FOR RTD

Determining the imaginary potential profile is the first
step m the usage of optical model. Nevertheless, many
papers have taken it as an unknown parameter and simply
introduced their results for some different values (Hu and
Stapleton, 1991; Zohta, 1990b; Hu and Stapleton, 1993).
Some other papers that have tried to calculate it on a
physical base, considered it simply as a scalar (a single
number) (Zohta and Tanamoto, 1993). Here we will
consider 1t in more detail and calculate 1t m its complete
form with complete dependency of its bias, energy,
position and temperature.

A simple form of imaginary potential can be obtained
from mobility. Let us consider this simple form before
going into details. By calculating the divergence of
coherent current density (the current density from the
Schrodinger equation when there exists an imaginary
potential in the equation) using Eq. 1 and its complex
conjugate, we have:

. A
V'J:oh :TWW (2)
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Comparing this term with the classical formula for v j
in the case G = 0 yields (R is the recombination and G is
the generation term);

w .
V.j=G-R DR:%quJ (3)

Considering the above relation and the relation
existing between the carrier’s lifetime and the
recombination term, R = n/1, we get w = / /27 (n is the
carrier density which is equal to P*W and t is the carrier’s
lifetime). Now if we use the mobility formula, | =qt/m*, to
substitute the carrier’s lifetime, we reach the desired
relation between the imaginary potential and mobility:

— (4)
2m*p

As anumerical example, for GaAs with m* = 0.067m0
and p = 7500 at 300k the imaginary potential got from the
above mentioned procedure will be equal to 1.8E-22.
Nevertheless, the resulted imaginary potential is a scalar
and is over simplified because mobility is only a low field
averaged quantity and as it will be seen later, the real
situations are more complicated.

To obtain a better estimation for the imaginary
potential, we can use the scattering rates to estimate the
carrier’s lifetime instead of using the mobility:

11
T (B ST(E.) ()

i

In the above formula, the summation is over the
scattering rates of various phenomena involved in the
motion of electron and E,, is the electron’s total energy.
For electrons in the RTD’s well, it 1s sufficient to include
the scattering rates from the absorption and emission of
polar optical phonons that cause electrons to scatter
inside the gamma valley or from gamma valley to L valleys
and the scattering rate from the acoustic phonons
(totally 5 scattering phenomena). Scattering rates formulas
are so long that we do not want to repeat them here. The
reader interested in this issue may refer to appendix M of
the reference (Singh, 1993). Figure 1 shows the results of
those that have calculated for GaAs at 300 K. It shows the
five mentioned scattering rates as a function of the
electron’s total energy. The total energy can be calculated
using the following formula:

29,2

LTI KT + V(x) (6)
2m
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Fig. 1: Electron’s scattering rates in the gamma valley of
GaAs at T = 300K as a function of its total energy
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Fig. 2: Imaginary potential obtained from the Eq. 7 (black
circles) as a function of position along the RTD’s
well for T = 300K at different biases (from 0V to
0.5V) and different wave-vectors (corresponds to
different electrons at the contact) in comparison
with the imaginary potential obtained from the
mobility (solid line)

In this formula, the first term is the kinetic energy of
electron at the contact. The second term is due to two
electron’s transverse degrees of freedom and the third
term is due to the potential energy. The imaginary
potential finally becomes:

w:gzr]{ﬁzkﬁz +KT+V(X)J (7

2m

The imaginary potential term calculated in this way
has its full dependency on bias (via third term in Eq. 6),
position (also via the third term of Eq. 6) and temperature
(via second term of Eq. 6) and obviously is more reliable
than a simple scalar term.
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To show the scale of changes of the imaginary
potential made by our model, we drew Fig. 2. In thus figure,
the horizontal axis is the position axes along the RTD’s
well. The imaginary potential for different biases in the
range of 0 V to 0.5 V and for different values of wave
vector at the contact has been calculated and drawn on
the figure. Also on the figure, the value obtained from
mobility (Eq. 4) has been shown. We see the imaginary
potential is not at all a single value and may vary very
widely in different cases. We also see that the estimation
obtained from the mobility is a very poor estimation.

INCOHERENT ELECTRON CURRENT IN RTD

When the imaginary potential term is added to the
Schradinger equation, the divergence of the current
density 1s no longer equal to zero (Eq. 2) and the sum of
the squared terms of transmission coefficient and
reflection coefficient on the left side of the device is no
longer equal to umty (Zohta, 1993):

Af | 1 ®

The difference 13 due to the scattering phenomena
which take some of the incoming electrons from their in-
phase (coherent) wave functions and scatter them mto
random phase (incoherent) states. These scattered
electrons eventually malke the incoherent current term that
different opinions have been presented about 1t.

Some authors (Yuming, 1988; Huand Stapletor, 1991 )
take the coherent current on the left side of the device as
the total electton cumrent (coherent current plus
mcoherent current). They have actually supposed that all
scattered electrons finally go out from the well through
only the right barrier and towards the right direction.
Other authors (Zohta, 1993; Zohta and Ezawa, 1992,
Zohta and Tanamoto, 1993) take not all but a portion of
the 1—\t|2 _ \T|2)f1kg /m" term as the incoherent current term.
They have dctually supposed that a portion of the
scattered electrons in the well eventually go through the
right barrier and others go through the left one.

In a previous study (Sharifi, 1999), we explained that
the scattering phenomena cause the electrons to become
mcoherent with the mncoming electrons, but they don’t
cause them to become classical particles having no phase
and wave nature. In other words, the scattered electrons
must be considered as quantum particles either. Therefore
assigning any property to the squared terms of the
transmission coefficients of the right barrier and the
left barrier separately as is the case m the references
(Zohta and Ezawa, 1992; Zohta and Tanamoto, 1993), 1s
not a correct assignment because this assignment will
erase any interfering term between the two barriers.

Therefore we suggest to use the meta-stable states
for modelling of the scattered electrons. Meta-stable
states are the states of a system when its boundary
conditions are set in such a way that they show only
outgoing electrons from all the boundaries of the system.
Therefore, the meta-stable states may model the trapped
electrons n the well of RTD wlich are gradually gomg out
from both two barriers. Another point that supports the
usage of the meta-stable states, is the fact that the density
of states in the well of RTD has a big peak at the energy
of these states; therefore, we expect most of the scattered
electrons go to these states.

Further, we will calculate these states for RTD and in
the section after that we will use them for calculation of
the incoherent current.

AN APPROXIMATE ANALYTICAL METHOD
FOR META-STABLE STATES OF RTD

Ina previous work (Sharifi and Adibi, 1999), we had
introduced a numerical method for calculating meta-stable
states of RTD. Here we introduce an approximate
analytical method. We begin by introducing an
approximate potential profile using a WKB concept. This
potential profile is constructed by replacing the two
barriers with two impulse functions having the same area

(Fig. 3).

di=|Bh-3V0B. 121
2B, + W,

qvb{(B, +W,_ +B, /2)}3
2B, + W, "

%)

d2= [Bhf

The dl and d2 are the powers of the two impulse
functions replaced the left and the nght barriers,
respectively. Bh 1s the barrier’s height. B, and W, are the
barrier’s width and the well’s width, respectively and Vb
is the applied bias voltage. For the wave function, we
assume three proper combinations of exponential terms in
the three regions (Fig. 3) (all ks are complex, E is complex
too).

Wi = AET 4B k= 2 (E+qV,/2)/5

Wit s = €€ k,=2m (E+qv,)/in (10}
Wirmea — De e k,= -\’21]‘1* (E) /h

Let us to consider the zero bias condition at first
(k1 = k2 =k3 = k). By equating the corresponding wave
functions at the two sides of the two barriers, respectively
and equating the difference of gradients of corresponding
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Fig. 3: Potential profile of RTD (upper-graph) and its
approximation by a stair shaped one with two
impulse functions; d1 and d2 (lower-graph)

wave functions at two sides of two barrers with the
corresponding integrals of the potential profile, we get the
following relations:

AW 12 | ik 12 _ o 72
Ag ik i2 | g kT 72y kT 2

ik C el _ (ikAC'kWW 2 kBe ) _ 2m'd2 C el 12 (1 1 )
%

ik ACH 2 kB2 jkp et _ 2Ly o
hz

One of the four constants in the above four relations
can be omitted from normalization concept. We selected
it to be B and take it to be ¢*™. Three other constants
can then be calculated from the first three relations:

ik
m'd2
S 42
= rlj*;z 12
D=¢c"™ 4 ik —1 gt
m'd2

Inserting these constants into the last relation will
give us the desired equation for k:

s »
. uﬁk_l}d[ 1hk_1]:0 (13)

m"d2 m"d2

2im"d1 e
Kk

Table 1: A few first meta-stable states energy’s Eigen-vahie for RTD at zero
bias (The RTD’s parameters are the same as Fig. 4)

State No. Eigen-value in (meV)
1 109.4-1.2i
2 439.1-9.0i
3 992.8-28.7i
4 2791.0-113i

150+ -0.84

100- & -1.07
% 8
| =12
< 504 g
g -1.4-

4y

g ‘g 16
£ .
£ -504
5 ; -1.84

-1004 2.0

-15 .

00 01 02 03 04 05
Bias voltage (V)

00 01 02 03 04 05
Bias voltage (V)

Fig. 4: The real part (left plot) and the imaginary part
(right plot) of Eigen-value of the first meta-stable
state of RTD as a function of bias voltage
calculated with the Eq. 15. The parameters are:
W, =504, B, =24A, Bh=1eV

This 13 a nonlinear multiple-answer algebraic
equation which may be scolved by a computer to get the
answers for k. The Eigen-values for energy can then be

calculated using g _ k' Table 1 shows a few first
2m”

energy Higen-values. Any of these Eigen-values has a
negative imaginary part. This negative imaginary part
causes the corresponding probability density function to
decay in time as expected of a meta-stable state.

Now the procedure can extend to non-zero bias
condition. Tt is lengthier but is straightforward and ends
into the following equation.

k, 2m'd2 |
M g il _ gt
k, 2m'dz
ST
| ) (14
+£ _ 2m'd2
_ 21’1’;de _k_3 k1 ihikl e E T ok
iFk, Kk _£+2m d2
k ik,

The k1, k2 and k3 may be replaced with their
definitions in the Eq. 10 to obtain an equation for energy.
Again, the equation is a nonlinear multiple-answer
complex equation which can be solved using a computer.
Figure 4 shows the result for the first meta-stable state

1031



J. Applied Sci., 8 (6): 1028-1034, 2008

energy’s Higen-value, as a function of bias voltage. We
see the real part has almost a linear functionality of the
bias but the imagmary pert has a more complex
functionality. After calculating the complex Eigen-value;
E, the complex wave vectors, kl, k2 and k3 may be
calculated from Eq. 10 and then the constants A, C and D
may be calculated from an extension form of the Eq. 12.
We need these quantities for calculating the incoherent
current at the next section.

INCOHERENT CURRENT MODEL USING
META-STABLE STATES

For incoherent current, we suggest the following
formula (in the formula O 1s the left hand side of the
device, L 1s the right hand side and x 13 a middle point
inside the device.):

jmcuh(x) = (jmh(o)_ jcnh(x))Tsr - (jcnh (X) ~ Joon (L))Tsl (15)

This formula has a clear interpretation. As mentioned
before mn optical model, the divergence of coherent
current density 1s related to the scattering rate of
electrons (Eq. 2). Therefore the integral of that term from
0 to x which 1s the coherent current density itself is equal
to the total scattering rate in the interval [0, x]. Tn Eq. 15,
this integral is multiplied by Tsr, which is the transmission
to right coefficient to yield the positive term of our
incoherent current density. In the same manner, the total
electrons scattered in the interval [x, L.] is multiplied by Tsl
(the transmission to left coefficient) to yield the negative
term of the incoherent current.

The two parameters, Tsr and Tsl, may be calculated
by the following relations using the before mentioned
meta-stable states:

Joea (W, 12) k,|cff
T, == : = 2 z
Jeta (Ww /2) = Ineta (_Ww /2) kz ‘C| + k3 ‘D‘ (1 6)
e (W, /2) k, [Df
Ty=- : = 2 B
Juneta (Ww ’IZ) ~ Jasta (7Ww /2) kz |C‘ + k3 |D|

Tsr and Tsl as calculated above are no longer local
parameters due to the transmission coefficients of the two
barriers separately, but are global parameters that
preserve all interference terms that may exist between the
two barriers. Therefore the introduced model preserves
the wave nature of incoherent electrons as well. Figure 5
shows the calculated Tsr as a function of bias. In the
figure, the lines Tsr = 1 and Tsr = 0.5 have also been
plotted which the first line corresponds to those papers
(Yurming, 1988) that supposed all scattered electrons will

1‘1 L} T T Ll L) T
1 —— |

B
2 o5 .
3
-5 0.8 _
" — i model
9 0.7 wnn Previous medel No., 1
é ] === Previous model No. 2
E (.64 -
=4
£ 05— —— —_ |

0.4 T T

¢ 005 01 015 02 025 03 035
Bias voltage

Fig. 5: The transmission to right coefficient, Tsr, of the
incoherent electrons as a function of bias voltage
calculated from the meta-stable states (Eq. 16) in
comparison with the two previous models (RTDs
parameters are the same as Fig. 4)

eventually go to the right. The second line corresponds
to those (Zohta, 1993) that supposed a half of scattered
electrons will go to the right. From the figure, we see that
the result obtained from meta-stable states is close to the
results of the first papers at high biases and to the second
papers at low biases. This 1s a very good behaviour that
matches our expectations and now 1s obtained mcely from
a firm physical base.

The incoherent current as suggested by Eq. 15 has
an interesting aspect. Divergence of total current, if its
incoherent term 1s calculated by that equation, will be
equal to zero m agreement with the particle conservation
concept.

Voo = Vi ()% s (5] = V[ (O T, + (1) T, =0 (A7)
THE ALGORITHM AND THE RESULTS

In our model, the current-voltage characteristics of
RTD can be calculated in the following steps:

¢  Calculate the Fermi level and then the potential
profile by solving the Poisson’s equation using the
mmpurity profile of all device layers mcluding buffer,
spacer and contact layers.

»  Calculate the imaginary potential as a function of
position for any bias and any (longitudinal) wave
vector at the contact (Eq. 7).

¢ TInsert the potential profile from the first step and the
imaginary potential from the second step into the
Schrodinger equation. Solve it and calculate the
coherent current profile for any wave vector at any
bias point.
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Fig. 6: The coherent, incoherent and total current of RTD
at T = 300K in conjunction with the ballistic
current. The brief RTD’s parameters are: Well: 50
A GaAs; Barriers: 17 A AlGaAs; Barrier height:
0.65 eV; Contact doping: 1el&/cm’
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Fig. 7. The results of our model for the total current of
RTD in comparison with the two previous models
(RTD’s parameters are the same as Fig. 6)

*  Calculate the meta-stable states and then Tsr and Tsl
at any bias point using Eq. 9.

*  Calculate the incoherent current for any wave vector
at any bias point using Eq. 15.

s (Calculate the total coherent, the total mcoherent and
the total current at any bias pomnt by a summation
over the corresponding the above partial terms
weighted by density of states (Sharifi and Adibi,
1999).

f(k)

KT 14 e(EF—rFkZ 73m" )/ KT
= In
1

. — (18)
nh +e(EF—m—ﬁk f2m )fKT

Figure 6 shows the total coherent, incoherent and
total current in conjunction with the ballistic current
{current, when there 1s no scattering). Figure 7 compares
the results of our model for total current with the two
previous models as mentioned before. The first previous
model (No. 1) had supposed that all scattered electrons go
eventually through the right barrier (Yuming, 1988). The
second previous model (No. 2), on the other hand, had
supposed that half of scattered electrons go through the
right barrier (Zohta, 1993). We see the new results are
closer but not equal to the model mumber 1.

CONCLUSION

In this study, we mtroduced two physic-based
models, one for the imaginary potential and another for
the incoherent current based on the meta-stable states.
We then used these two models through the optical
model for simulation of RTD and compared our results
with the previous results. The two models introduced are
not restricted to RTD and can be used in other quantum
devices as well. Beside of the incoherent current, there is
another important quantity that can be calculated from the
meta-stable states too. This quantity is the incoherent
electron density which its determination enables us to do
a truly self consistent calculation. We believe by these
two models, the optical model has gotten a better
situation and in the future it will be used more than past.
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