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Numerical Approximations of a Dynamic System Containing Fractional Derivatives
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Abstract: This study presents numerical methods-fractional difference and Adomian decomposition-for
solution of a dynamic system containing fractional derivative of order ¢, O<ew<1. The fractional derivative is
described in the Caputo sense. The Adomian decomposition method provides the solution in the form of a
comvergent power series with easily computable components. Then the diagonal Padé approximants are
effectively used in the analysis to capture the essential behavior of the solution. The presented schemes are
mtroduced 1n a general way so that they can be used m applied sciences.
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INTRODUCTION

Although fractional derivatives have a long
mathematical history, for many vears they were not used
in physics. One possible explanation of such unpopularity
could be that there are multiple nonequivalent defimtions
of fractional derivatives (Podlubny, 1999). Another
difficult 1s that fractional derivatives have no evident
geometrical interpretation because of their nonlocal
character (Podlubny, 2002). However, during the last ten
vears fractional calculus starts to attract much more
attention of physicists and mathematicians. It was found
that various, especially interdisciplinary applications can
be elegantly modeled with the help of the fractional
derivatives. For example, the nonlinear oscillation of
earthquake can be modeled with fractional derivatives
(He, 1998a) and the fluid-dynamic traffic model with
fractional derivatives (He, 1998b) can eliminate the
deficiency arising from the assumption of continuum
traffic flow. Based on experimental data fractional partial
differential equations for seepage flow mn porous media
are suggested in (He, 1998c) and differential ecuations
with fractional order have recently proved to be valuable
tools to the modeling of many physical phenomena
(Grigorenko and Grigorenko, 2003; Podlubny, 1999). A
review of some applications of fractional derivatives
continuum and statistical mechanics 15 given by
(Mainardi, 1997).

In this study, we present numerical and analytical
solutions for the nonlinear fractional ordinary differential
Eq

dy 4 _
a Ald-yr, y@=p (1)
AeR" 0<a<l

where, B is a real constant and « is a parameter describing
the order of the fractional derivative. The general
response expression contains a parameter describing the
order of the fractional derivative that can be varied to
obtain various responses. For the special case o = 0.5, (1)
describes the cooling of a semi-mfimte body by
radiation and the initial value problem has been solved
numerically using the fractional difference method
(Podlubny, 1999).

There are several definitions of a fractional derivative
of order =0 (Oldham and Sparier, 1974; Podlubny, 1999)
The two most commonly used defimtions are the
Riemann-Liouville and Caputo. Each definition uses
Riemann-Liouville fractional integration and denivatives of
whole order. The difference between the two definitions
is in the order of evaluation. Riemann-Liouville fractional
integration of order ¢ is defined as:

1
T(e)
a0, x>0

T =

!(X — 0" ()L, @)

The next two Equations define Riemann-Liouville and
Caputo fractional derivatives of order ¢, respectively,

D*f(x) = ;Xmm (0" £(x)), (3)
DEF () = 7 f ), (4)
e

where, m-1<et<m and m € N. For now, the Caputo
fractional derivative will be denoted by D.* to mamtain a
clear distinction with the Riemann-Liouville fractional
derivative. The Caputo fractional derivative first computes
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an ordinary derivative followed by a fractional integral to
achieve the desired order of fractional derivative. The
Riemann-Liouville fractional derivative 1s computed in the
reverse order. We have chosen to use the Caputo
fractional derivative because it allows traditional mitial
and boundary conditions to be i the
formulation of the problem, but for homogeneous mtial
condition assumption, these two operators coincide. For
more details on the geometric and physical interpretation
for fractional derivatives of both the Riemann-Liouville
and Caputo types see (Podlubny, 2002).

In this study, we will use the Fractional Difference
Method (FDM) (Pedlubny, 1999) to find an approximate
numerical solution of the nonlinear fractional ordinary
differential Eq. 1. Also we will use the Adomian
Decomposition Method (ADM) (Adomian, 1988, 1994) to
provide analytic, verifiable, rapidly convergence
approximation to Eq. 1. Unlike the fractional difference
method, the decomposition method provides us with
numerical solution without discretization of the given
equation and therefore, it is not affected by computation
round-off errors and one is not faced with necessity of
large computer memory and time. The method introduces
the solution in the form of a convergent power series with
elegantly computable terms. Furthermore, the behavior of

included

the moedel can be formally determined by using the Padé
approximants of the series obtamned. The combination of
the series solution with the Padé approximants was
successfully implemented in (Boyd, 1997, Momaru, 2004;
Wazwaz, 1999) and proved to be effective and promising.
Moreover,
approximant is usually the diagonal approximant. The
essential behavior of the solution y (t) of Eq. 1 will be
addressed by using several diagonal Padé approximants
of different degrees.

it was found that the most accurate

FRACTIONAL DIFFERENCE METHOD

Here, we miroduce another defimtion of the fractional
derivative. With regard to (Oldham and Spamer, 1974,
Podlubny, 1999) we define the fractional derivative in the
Grinwald-Lettukov sense as:

[t/ 8]

D*y(t) = limh™ 3 (-1 my(t— ih (5

where, [t] means the integer part of t and h is the step size.

The definition of operator in the Grinwald-Letnikov
sense (5) 18 equivalent to the definition of operator in the
Riemann-Liouville sense (3) (Podlubny, 1999).
Nevertheless the Grimwald-Letmkov operator is more

flexible and most straightforward in numerical
calculations. Approximating the fractional derivative i 1

by 5, we obtain the following approximation for Eq. 1:

[t /h] .
Yo =B ; Ci¥mj— All-y, )y =0, (6)
(m=12,3,-,

where, t, = mh, y, =y (t,) and ¢% are Griilnwald-Letnikov
coefficients defined as:

cf:h’“(—l)J[?], (=0.12..). (7)

Using the recurrence relationship (Podlubny, 1999).

e pe e |q lte] .
¢ =h"", ¢ 7[1 i ch_l, (8)
(j=12,3,-),

We can compute the coefficients in a simple way. For
1=1 we havec¢,"=-¢h™.
Approximation (6) leads to the numerical solution

algorithm described by:

Vo= B Va = AQ-¥)" =20V (9)
=1
(m=123-).
This algorithm is simple for computational

performance for all values of ¢, O<e<1. For details about
the fractional difference method and its applications for
solving fractional differential equations, we refer the
reader to (Podlubny, 1999).

DECOMPOSITION METHOD

The decomposition method requires that the
fractional differential Eq. 1 be expressed m terms of
operator from as:

Diy=Ad-y)° (10)

where, the fractional differential operator D.* 1s defined as
in Eq. 4 denoted by:

P
dt™
Applying the operator J*, the inverse of the operator
D.”, to both sides of Eq. 10 and using the 1mtial condition
lead to:
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yit) =+ PLAG - 9], (1)

The Adomian's decomposition method (Adomian,
1988, 1994) suggests the solution v (t) be decomposed by
the infinite series of components:

GEDR (12)

and the nonhnear function in Eq. 11 8 decomposed as
follows:

NI = AQ-y) =S A, (13)

where, A, are the so-called the Adomian polynomials.
Substitution the decomposition series 12 and 13 into both
sides of 11 gives:

>3, 0-F+ PLY A )] a4

From Eq. 14, the iterates are determined by the following
recursive way:

Yo (t) = &
VD =TA 1),
v,{t) = (A (1), (15)

Vou ()= (A (D)

The Adomian polynomial A, (t) can be calculated for
all forms of nonlinearity according to specific algorithims
constructed by Adomian (1994). The general form of
formula for A, Adomian polynomials 1s:

P L‘Iﬂ N(i mkﬂl (1e)

]
n! = o

This formula 18 easy to compute by using
Mathematica software or by setting a computer code to
get as many polynomials as we need in the calculation of
the numerical as well as explicit solutions.

Finally, we approximate the solution y (t) by the
truncated series:

B (D= 2,0, and Jim o, 0~ yO amn

However, in many cases the exact solution in a closed
form may be obtamed. Moreover, the decomposition
series solutions are generally converge very rapidly. The

convergence of the decomposition series has investigated
by several authors. The theoretical treatment of
convergence of the decomposition method has been
considered in the literature (Abbaoui and Cherruault,
1996a, b, Cherruault, 1989; Cherruault and Adomian, 1993;
Répaci, 1990). They obtained some results about the
speed of convergence of this method. In recent study
of Abbaoui and Cherruault (1996a) have proposed a new
approach of convergence of the decomposition series.
The authors have given a new condition for obtaining
convergence of the decomposition series to the classical
presentation of the ADM in (Abbaoui and Cherruault,
1996b).

NUMERICAL EXPERIMENTS

Here, we use the ADM to find an approximate
solution of the fractional model Eq. 1 together with the
mitial condition y (0) = 0 and A = 1. Equation 1 1s also
solved numerically and the corresponding results are
compared with the Adomian solution. The numerical
method adopted in this study was the fractional difference
method and the step size h 1s chosen to be 0.01.

To calculate the terms of the decomposition series 12
for ¥ (t), we substitute the initial condition and the
corresponding Adomian polynomials mte 15 and using
Mathematica consequently, we obtain

¥ (t) = 0,
1
Hr= al{o)
-4 ot
(ot oDy (18)
28
(e + 3 + o ()
—280

T +4)

£,

V2 (t) =

o+

¥s (t) =

o+l

¥ (t) =

The components and vy, were also

Yoo X8
determined and will be used, but for brevity not listed. In
this matter twenty components of the decomposition
series (12) were obtained of which y (t) was evaluated to

have the following expansion:

1 = 4
ol (o) (ot + o) (er)
PO S (19
(2o + 3o + o (o)
280
CT(a+4)

o+l

yit)=

o3

1081



J. Applied Sci., 8 (6): 1079-1084, 2008

Our aim 1is to study the mathematical behaviour of the
solution y (t) for different values of ¢. Tt was formally
shown by Boyd (1997), Momarm (2004) and Wazwaz
(1999) that this goal can be achieved by forming Padé
approximants (Balcer, 1975) which have the advantage of
manipulating the polynomial approximation into a rational
function to gamn more information about y (t). It 15 well-
known that Padé approximants will converge on the entire
real axis (Boyd, 1997) if y (1) is free of singularities on the
real axis. Tt is of interest to note that Padé approximants
give results with no greater error bounds (Burden and
Faires, 1993) than approximation by polynomials. More
importantly, the diagonal approximant is the most accurate
approximant, therefore we will construct only the diagonal
approximants 1n the following discussions. The
computational work can be performed by usmg any
manipulation language such as Maple and Mathematica.

To consider the behavioer of solution of different
values of ¢, we will take advantage of the explicit formula
(19) available for O<g<] and consider the following two
special cases:

First order case: Setting ¢ = 1 in Eq. 19, we obtain the
approximate solution in a series form as:

y(t) = t—2t* +%t3 —%t“ S 728

3 9 (20)
1976 ; 5434 . 135850,
9 9 81
The [4/4] Padé approximants gives:
2 3 4
[4/4]- t+4.5t° +5.59524t° +1.64286t (21)

1+6.5t+13.9286t%+ 10.8333t" + 2.166667t*

Table 1 shows the values of v (t) by using the
numerical solution obtained by the fractional difference
method and by using the [4/4], [8/8] and [10/10] Padé
approximants for specific value of ¢ = 1. The exact values
of y.... were evaluated using the exact solution of (1)
given by:

y(t):1+3r;—(1+ 6t + 9t*y' (22)
1+3t
and the values for both methods are in good agreement
with the exact values.
An mportant conclusion can be drawn is that the
error decreases dramatically with the mcrease of the
degree of the Padé approximants.

Fractional order case: In this case we will examine the
fractional nonlinear Eq. 1 when « = 1/2. It describes the

Table 1: Numerical values when ¢ = 1 using the two methods

t ¥ [4/4] ¥ [8/8] ¥ [10/10] VD Y et

0.0 0.000000  0.000000  0.000000  0.000000  0.000000
1.0 0369986  0.370039  0.370039 0371505 0.370039
2.0 0476570 0477241  0.747242 0478215 0.744242
3.0 0.533744  0.535830  0.535840 0536556 0.535841
4.0 0.570593  0.574665  0.574705  0.575271  0.574710
5.0 0.596654  0.603037  0.603135  0.603610 0.603150
6.0 0.616180  0.625022  0.625209 0625632 0.625244
7.0 0.631405  0.642740  0.643050 0643452  0.643117
8.0 0.643633  0.657429  0.657890  0.658299  0.658005
9.0 0.653680  0.669867  0.670505  0.670945  0.670683
10.0 0.653680  0.680574  0.681410  0.681904  0.6816569

Table 2: Numerical values when o = 0.5 using the two methods

t v [44] vy [6/6] ¥ [8/8] b

0.0 0.000000 0.000000 0.000000 0.000000
1.0 0.312768 0.313400 0.313428 0.313995
2.0 0.352557 0.354253 0.354376 0.354699
3.0 0.375080 0.377869 0.378128 0.378373
4.0 0.390549 0.394387 0.394808 0.395027
5.0 0.402192 0.407020 0.407617 0.407837
6.0 0411446 0.417203 0.417985 0.418221
7.0 0.419073 0.425703 0.426675 0.426938
8.0 0.425524 0.432976 0.434140 0.434439
9.0 0.431090 0.439317 0.440674 0.441015
10.0 0.435966 0.444927 0.446475 0.446864

cooling of a semi-infinite body by radiation (Podlubny,
1999). Setting ¢« = 1/2 in Eq. 19 gives:

y(t)=1.12838" — 4t+17.7828t"" — 87.0986t*

+ 450,167 — 2406488 + 131723t (23)
— 7335250 4
For simplicity, let t"” = x; then,
y(x) =1.12838x — 4x" +17.7828x" — 87.0986x" (24)

+450.1%% — 2406.48x" +13172.3x" - 73352.5x% + ...

Calculating the [8/8] Padé approximants and recalling that
x =t we get

={(1. + 24. t
[8/8]=(1.12838t" + 24.6218
+213.563% % + - +182.555t%)/ (25)
+ 25. L+ . t
1+ 25.365t"™ + 263 424
+1440.83t™* + -+ 269.115t").

The obtamed numerical results for both methods are
shown in Table 2. From these results we conclude that the
half-order derivative system exlubits fast increase in the
beginmng and slow increase later. Similar behavior was
observed in (Podlubny, 1999).

Figure 1 shows the [8/8] Padé approximants of v (t)
fore=1, a=0.75and ¢ = 0.5. Tt can be seen from Fig. 1
that the solution continuously depends on the time-
fractional derivative.
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1.09

y ()

t

Fig. 1: [8/8] Padé approximants of y (t): (—)a=1,(....)
=075 (---)ya=05

CONCLUDING REMARKS

The fundamental goal of this work has been to
construct an approximation to the selution of a dynamic
system containing fractional derivatives. The goal has
been achieved by using the fractional difference method
and the decomposition method. The methods were used
ina direct way without using linearization, perturbation or
restrictive assumptions.

There are three important points to make here. First,
unlike the fractional difference techniques, where y (t) i
defined at grid pomnts only, the solution obtained by the
decomposition method is given i a fractional series form.
Second, the ligh agreement of the approximation of y (t)
between the methods used at thus study 15 clear and
remarkable. Fially, the behavior of the model, in that it
exhibits fast increase in the beginning and slow increase
later, can be formally determmed by usmg the Padé
approximants. The combimng of the series obtained with
the Padé approximants provides a successful tool and
promising scheme for identical applications.

In future
mnplementation of a new analytical techmique, He's
variational iteration method for solving the discussed
problem. This method has many merits and has much
advantages over the Adomian method. It can be
difficulty arising in
calculating Adomian polynomials. Applications of the
variational iteration method can be found in Refs.
(He, 1998a, b, 1999, 2000; He et ai., 2004).

researches we will focus on the

mtroduced to overcome the
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