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Parameter Estimation for the Heavy Tailed Distributions

with the Empirical Distribution

H. Jabbari Khamnei, H. Bevrani and A A. Haydari
Department of Statistics, Faculty of Mathematical Science,
University of Tabriz and Research Institute for Fundamental Science, Tabriz, Iran

on the empirical distribution and, using the list squares meﬂ"?
approach, it 13 applied to famous Parteo and Student distributions,as two dif

numerical results are reported.
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INTRODUCTION

Let F(x) be the distribution functi
variable X, Then F(x) is said to b
distributions class, if there exists positive con
0 <y < 2 such that:

lim x'F(x)=C

X

Where:
Fx) =1 -F(x).

of

phenomena  including
otechnology, informatics,
rance, they describe the behavior of financial
andelbort, 1982, Hosking and Wallis, 1987,
ell and Davis, 1991; Jamcki and Weron, 1994,
gl., 1998, Nikias and Shao, 1995). When
atistical dependences we often neglect the

of large-scale events on the tail of

distribution.

Heavy tailed distributions are the distributions, the
tail of which cannot be cut off. So, we cannot neglect the
large-scale but rare events.

we will mvestigate Pareto and Student

heavy tailed distributions class

distribution: We know that Pareto density
on is given by:

(a2

Papt =B x> a0, @)
3 x0:+

Tts distribution function has the form:
Fx)=1- [EJ (3
X

In case =1 this distribution 1s considered to be the
distribution with one parameter. Mean and variance of
this distribution are:

E(X) = ““—Bl a1

CLBZ _ ap
(a-2) (CL—I)Z,

Var(X) =

o 2.

The distribution has infinite mean and variance if
¢ <1 and ¢ < 2, respectively. Especially in case ¢ < 2,
when variance 1s very high, Pareto distribution 1s a heavy
tailed distribution. Comparing Eq. 1 and 3 we realize that
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heavy tailed distributions and Pareto distribution are
similar. That 18 why we often use the first defimtion for
heavy tailed distribution.

Student distribution: A random variable X has a Student
distribution with probability mass function:

GENTE (4)

pﬂx):m RS £

Tt's not complicated to realize that for the Student
distribution with parameter y moments of degrees &zv do
not exist.

Morecver if Y, is random value with Student's
distribution and x - e then:

p(x,| 0= "2, (5)

Where:

T
ICEINIIE

W ATy

Equation 5 satisfies the heavy tail
defimition. That 15 why Student distribution
heavy tailed distributions class. The paramet
index of tail gravity.

We pay attention that x — < onl
This condition exactly is ]
variance.

The most evident and natural
estimation connected with

atiort methods. In this study
tion of using the least squares
an

>

MATION OF ¥ USING EMPIRICAL
DISTRIBUTION

Let X, X,.,.., X, be a random sample of size n from
a heavy tailed distribution. Let X, X, ... X, be the
corresponding  order statistics and F (x) be the
appropriate empirical distribution function. Than

1 n
E, (x) :HZHI(X‘ < X), —0<X < 0.

According to Glivenko theorem for large n
pX; > x)=1-F, (x) (6)

It's obvious that:

i-1 .
Fn(X(i)):T, i=1...n.

Comparing 4, 6 and 7, we note, that
large 1, the equations

Cop

or

n—i+1

),

(8a)

log(Cepyd -7 )

n

or

0g(X ;)

o8(Cep) llog(n;ﬂl) (8b)
O n 7

[ts natural to consider that Eq. 8a and b are fulfilled
1, that are greater or equal than some k, so, for1 > k.
g Eq. Baandb fori=k, ..., n, we'll calculate estimation
¥ of v using condition

. o —i+1
¥y, = arg min, Z[logc(?) —ylog(X(i))—log(n :— o (Sa)
i=k

or

. e 108(Cey) 1. n—-is+l
i —arg min, > flogXg) ——— 0"+ “log" ) (5b)
ik L "

Conditions Eq. 9a and b represent the two-
parametered model of the least squares. The solution of
Eq. 9a1s the estimation:

n—-i+1

n
(n—k+1)21:klogX(i)log( - )—
n n n-i+l
A 2 JoeX D log— =)

Te =~ 3
n 2 n
(n-k+1) E - (log2;) —[ E 1:klogX(l)J

(10a)

and for (9b) the estimation is
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n—i+1

n
(n—k+1)zi:klogX(1)log( )

n n n—-i+1
B Zl:klogX@Zl:klog(

n
n-i+l
)

(—k+DY"" (gl

{Zlklog(

L (10b)
Tk
n

)

Using the second estimation Eq. 10b we can calculate

n—i+l

the unbiased estimation for ! . According the feature of
T

order statistics (Arnold et al., 1992):

1
n-r—+1

1 1

EdlogX,)
E(log X)) = D Tii:E(logXl)Z
r=1 r=1

but mean log X, is:

1+1logC
Eflog X)) = ——2

That is why unbiased estimation for 1
T

(n—k+1)2f_kaog(“”1)),
. n-i+l

n
2
1 _(21:k10g n )]
e (n—k + 1)2;2;1 n

1
Tk

9 with small or
the final result. But
odel Eq. 9a and b

the condition

of the second coefficient C,, which we
mg conditions Eq. 9a and b, for optimal k

parameter 7y estimation from conditions
Eq. 8a and B! Exactly the value of C,, estimated by the

least squares method using conditions Eq. Sa and b is:

n-—

€, = exp!

n-— n

1 z S 11
kH[Zk:log( )+yk§logX®]} (11a)

and

(11b)

il

Gy, = exp{

n—i+1
n

~ n > n

¥ 1

] [Z log 3¢y + Y—Z log(
1=k k 1=k

n-—

RESULTS ANALYSIS

Student distribution and the Fig. 2a
distributions.
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Fig. 1: ¥ and 7 48, for student distribution, where (a)
y=05Mmyvy=1and(c)y =2
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209 (a) Camma estimation for Parcto dist. with g = 0.5 (1 ¢ We can also use owr method not only for estimating
1.5 parameter of Student and Pareto distributions but also for
Lo other distributions, which belong to the heavy tailed
> ~, distributions class.
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