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Abstract: In this study, we construct the optinal estimator for sample size, which were sufficient for
maintenance the demanded accuracy and reliability. The goal of this paper 1s presenting three estimators such
as follow. The first one which is traditional approach and rough enough is based on the Chebyshev's
inequality. The second one is based on the central limit theorem, but it doesn't take into account the accuracy
of the normal approximation. The third estimator is based on Berry-Esseen's inequality that takes into account
the accuracy of the normal approximation and 1s guaranteed.
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INTRODUCTION

The Monte Carle method provides approximate
solutions to a wvariety of mathematical problems
(Bauer, 1958). As 1s well knowr, the Monte-Carlo method
15 composed from three composite parts. Firstly, this is a
simulation of random variables with the known
distributions, secondly, construction of probability
models for real processes and at last, problems of theory
of the statistical estimation (Rubenstein, 1981). Certainly,
the basic ideas of this method are the law of large
numbers and the central limit theorem (Ermakov, 1971,
Bevrami, 2003; Gentle, 2004). In both cases the sample size
15 unknown. Frequently there 1s a question, whether
enough the available statistical data that the inference
made on their basis, were exact and reliable, in other
words, whether available sampling is representative. Also
1t 18 rather general problem. Therefore the purpose of the
given article is the estimation of sample's value for the
Monte-Carlo method.

THE MONTE-CARLO METHOD

Let it is required to calculate approximately model T
with the help of a Monte-Carlo method. Then it is
necessary to find an random variable U, such, that its
mathematical expectation is equal I: EU=1.

Let's consider (n+l) independent identically
distributed random variables U,, U,,... .U, with the fimte
second moments. Then from the central limiting theorem
it follows that;

ln
Pl =S U, -1

<3J%}:®(3):0.998 (1)

where, © (x) is a standard normal distribution function.

This relation means, that if we have sufficiently big
amount of observations U, U,,..., U, the required model
can be approximately calculated as follows:

U ~1 (2)

1
¢ )

Thus, with the probability near to 0.998, we
mistake on value, not exceeding 5 {DU - Easy to see,
that BT, = 1. n

ESTIMATION OF SAMPLE SIZE

Let's consider the problem on the accuracy of the
approximation I', = I. Unfortunately, unlike the determined
(nonrandom) schemes, analysis of random data requires
more then one parameter describmg the accuracy, as
event |7 — I‘ <e is random, forany € € (0, 1), that is, for one
sampling this event may happen and for any another-may
not. Therefore alongside with the parameter £ describing
the accuracy, we'll set one more parameter v € (0, 1)-
confidence of a statistical inference. We'll require, that the
probability of the indicated event was not less then vy,
that 1s,

Py -1=e) <1y (3)
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Thus it is clear, that € should be close to zero and y
should be close to umt, characterizing our confidence of
the regularity of the inference. Now we are passing to the
estimation of a sample size. We'll start with traditional
approaches, using the Chebyshev's mequality and the
central limiting theorem. Then we'll consider more accurate
estimates which take into account an error of normal
approximation. These estimates will be based of the Berry-
Esseen's inequality and it's more exact analogue for the
case of smooth distributions.

Solution based of the Chebyshev's inequality: On the
Chebyshev's inequality:

a2

P12z} < DI (4)

Hence, condition (3) is satisfied, if DE; <1y Denote
&

DU =0, then p _ o and a low bound for the number of
n
observations will look like:

2

nz—2 5
gl-v

Solution based on the central limit theorem: As is well
known, the Chebyshev's mequality 1s rather rough,
therefore, using the Central Limiting Theorem (CLT)
instead of it permits to hope, that estimates for the
necessary sample size and appropriate accuracy would be
more optimistically. CLT implies, that for the sufficiently
big n

N U‘fl‘lI EAJH EJH
P InI|28}P{ Zm zﬁ}zz 1(1{@}} (6)

Taking into account requirements on the confidence
of our inference, we obtain, that probability (6) should be
no more than 1-v:

2

ol

when 1n view of definition ¢-quantiles z, of the standard
normal law we obtain

(7

As it is easy to see, estimates (5) and (7) differ only

in the factors (1-v)™" and Zf,,_y . For example, let us assign
2

vy = 0.95, then the condition (5) requires that the relation
was n_82 not less than 20, while the (7) one-only 3.85

Z
o

(2,555 = 1.96), that 1s more, than five times better. Such in
the umage, the CLT allows to receive more optimistically
estimates, however optumism from apparent advantage of
the solution based on the CLT, doesn't owe us to weaken.
The matter 15 that the Chebyshev's inequality gives
though rough, but absolutely correct, guaranteed
estimates for the sample's value and for the accuracy. At
the same time, aftracting the CLT, we use approximate
equality (6), which brings itself an error into the inference.
In the following section we'll correct this lack.

Solutions which take into account the accuracy of the
normal approximation: The Berry-Esseen inequality as an
estimate of the rate of convergence in the CLT is well
known in the probability theory. This estimate holds for
an arbitrary distribution with the fimte third moment.

Assume, that the random variable U has the fimte
third moment and denote [’ = M[U-1". Then, applying the
Berry-Hsseen's inequality to the accuracy estimation of
relation (6), we obtain:

a,=|P{ 1;—1|>a}—2{1—®[jg_“;ﬂ g% (8)

where, L,= CCDTEE and C; 1s an absolute constant with the

upper bound C;<0.7655 (Shiganov, 1986, Korolev and
Shevtsova, 2006). Thus, more accurate estimate for the
sample's value is as follows:

2 2
z o
14y, L
G (%
82

n:=

Results analysis: Let ¢° = 1. Then the required sample's
value can be easily computed with the help of relations
Eq. 5,7, 9 and 11. The outcomes of these computations
are shown in the Table 1 and 2 (Appendix). The first
Table 1 1s constructed for € = 0.001 and the second one-
for £ = 0.01. The upper rows contain values of confidence
level v, the second and the third ones-values of the
samples sizes, obtamed by using the Chebyshev's
inequality (Eq. 5) and the CL.T (Eq. 7), accordingly. A
marginal left column contains the values of L; (from 0.7655
till 2.1655 with the step 0.1). We consider so lower bound
for L, because as it follows from the Lyapunov's

mequality Ez -1 and therefore L;>C,. The sample's value
[s3
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can be found in the intersection of the row with
appropriate value T, and the column with required
confidence level v.

APPENDIX

Table 1: Estimations for the sample’s value when & = 0.001

¥ 0.900 0.925 0.950 0.975 0.990
Ngye 10000000 13333333 20000000 40000000 100000000
Ngrr 2705544 3170053 3841458 5023886 6634895
T Rample’s value for an arbitrary distribution

0.7655 2720423 3188840 3867783 5071654 6743228
0.8655 2722372 3191303 3871240 5077962 6757754
0.9655 2724322 3193768 3874702 5084286 6772370
1.0655 2726274 3196235 3878169 5090626 6787076
1.1655 2728226 3198704 3881640 5096982 6801874
1.2655 2730180 3201175 3885116 5103355 6816766
1.3655 2732135 3203649 3888395 5109743 6831751
1.4655 2734001 3206124 3892080 5116148 6846832
1.5655 2736048 3208602 3895569 5122570 6862009
1.6655 2738007 3211082 3899062 5129007 6877283
1.7655 2739967 3213564 3902560 5135462 6892657
1.8655 2741928 3216048 3906063 5141933 6908130
1.9655 2743890 3218534 3909570 5148421 6923705
2.0655 2745853 3221022 3913081 5154926 6939382
2.1655 2747818 3223512 3916598 5161447 6955164
Table 2: Estimations for the sample’s value when g = 0.01

¥ 0.9 0.925 0.95 0.975 0.99
Ngye 100000 133333 200000 400000 1000000
Ngrr 27055 31701 38415 50239 66349
T Rample’s value for an arbitrary distribution

0.7655 28576 33637 41170 55482 80313
0.8655 28781 33899 41552 56255 82894
0.9655 28986 34164 41939 57052 85761
1.0655 20193 34432 42332 57874 88974
1.1655 29401 34702 42730 58724 920614
1.2655 29611 34974 43134 59602 96785
1.3655 20822 35249 43545 60511 101626
1.4655 30035 35527 43962 61453 107320
1.5655 30249 35808 44385 62430 114096
1.6655 30465 36091 44815 63444 122226
1.7655 30682 36377 45252 64498 131976
1.8655 30900 36666 45695 65594 143523
1.9655 31121 36958 46147 66739 156865
2.0655 31343 37253 46605 67933 171817
2.1655 31566 37551 47072 69180 188119
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