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Abstract: Due to wide range of interest in use of wave equations to gain insight in to vibrating problems,
Homotopy Perturbation Method (HPM) and Variational Tteration Method (VIM) are employed to approximate
the solution of the three types of wave equations including one-dimensional wave equation, kinematic wave
equation and non-linear homogeneous wave equation The final results obtained by HPM and VIM are
compared with those results obtained from the exact solution. The comparison shows a precise agreement
between the results and ntroduces these new methods as the applicable methods which they need less
computations and are much easier and more convenient than other approximate methods, so they can be widely

used n engineering.
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INTRODUCTION

In this study, we consider the linear and non-linear
wave equation (Inc et al., 2004):

Uy = e @ (0, 0, 0, u, W)+ F (1) (1)

On the finite x-1interval [0, 7] with Dirichlet boundary
condition:

ulx, M =0=u(tl, ), -eo<t=to (2)

and F (x,t) is a given function of x and t.

This equation describes the propagation of a wave
(or disturbance) and it arises in a wide variety of physical
problems. some of these problems mclude a vibrating
string, vibrating membrane, longitudinal vibrations of an
elastic rod or beam, shallow water waves, acoustic
problems for the velocity potential for a fluid flow through
which sound can be transmitted, transmission of electric
signals along a cable, shock waves, chemical exchange
processes in chromatography, sediment transport in
rivers and waves in plasmas and both electric and
magnetic fields in the absence of charge and dielectric
(Debnath, 1997).

We will apply the Variational Iteration Method (VIM)
(He, 1999a, 2000, Momani and Abuasad, 2006, Ganjiet al.,
2007, Sweilam and Khader, 2007; Bildik and Konuralp,

2006) and Homotopy Perturbation Method (HPM) (He,
1999b, 2006, Zhang and He, 2006, Gamiand Sadighi, 2007)
for the three types of partial differential wave equations.

Variational Iteration Method (VIM) and Homotopy-
Perturbation Method (HPM) are the most effective and
convenient ones for both linear and nonlinear equations.
The VIM is to construct correction functional using
general Lagrange multipliers identified optimally via the
variational theory and the initial approximation can be
freely chosen with unknown constants. The HPM
deforms a difficult problem in to a simple problem which
can be easily solved using ordinary methods.

Extensive studies have been done regarding this
matter. Such as mmvestigation of Helmholtz equation and
fifth-order KdV equation or Nonlinear Coupled Systems
of reaction-diffusion Equations using Homotopy
perturbation method (Ganji and Sadighi, 2006).

BASICIDEA OF HOMOTOPY-PERTURBATION
METHOD

Lmnear and Nonlinear phencmena are of fundamental
importance in various fields of science and engineering.
Most models of real-life problems are still very difficult to
solve. Therefore, approximate analytical solutions such as
Homotopy Perturbation Method (HPM) were introduced.
This method is the most effective and convenient ones for
both linear and nonlinear equations.
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Perturbation method is based on assuming a small
parameter. The majority of nonlinear problems, especially
those having strong nonlinearity, have no small
parameters at all and the approximate solutions obtained
by the perturbation methods, in most cases, are valid only
for small values of the small parameter.

Generally, the perturbation solutions are umformly
valid as long as a scientific system parameter is small.
However, we cammot rely fully on the approximations,
because there is no criterion on which the small parameter
should exists. Thus, it 1s essential to check the validity of
the approximations numerically and/or experimentally. To
overcome these difficulties, HPM have been proposed
recently.

To explain this method, let us consider the following
function:

AW-LD=0 reQ (3)

With the boundary conditions of:

B(u,@) =0, rel 4
én

Where, AB, f (1) and I" are a general differential
operator, a boundary operator, a known analytical
function and the boundary of the domain (3, respectively.

Generally speaking the operator can be divided in to
a linear part L and a nonlinear part N (u). Equation 3 can
therefore, be written as:

L (wtN (w-f () =0 (5

By the homotopy techmique, we construct a

homotopy v (r, p): x[0,1]—+R Which satisfies:

H(,p) = (1-p) LOv) - L(u, ) |+ p[ Aw) - fin) | =0,
pel0,1]reQ,

(6)

Or

H(v.p) = L(v) ~L(uy) + pL(u,) + p[N(v) ~ £} |=0  (7)

Where, pe [0,1] is an embedding parameter, while u,
1s an imtial approximation of Eq. 3, which satisfies the
boundary conditions. Obviously, from Eq. 6 and 7 we will
have:

H(v.0)= L(v)-L(u; )= 0, (8)
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Hv,)=AW)-f(1)=0, €))

The changing process of p from zero to unity 1s just
that of v (r, p) from u, to u (r). In topology, this is called
deformation, while L. (v)-1. (1) and A (v) -f (r) are called
homotopy.

According to the HPM, we can first use the
embedding parameter p as a small parameter and assume
that the solutions of Eq. 6 and 7 can be written as a power
Series 1n p:

(10)

— 2
V=V, +DpV, +pV, + ..

Setting p = 1 yields in the approximate solution of Eq. 3
to:

u=limv=v +v +v,+.. (11)
p—1

The combination of the perturbation method and the
homotopy method is called the HPM, which eliminates the
drawbaclks of the traditional perturbation methods while
keeping all its advantage.

The series (11) 15 convergent for most cases.
However, the convergent rate depends on the nonlinear
operator A (v). Moreover, He (1999b) made the following
suggestions:

The second derivative of N (v) with respect to v must
be small because the parameter may be relatively
large, 1e., p—1.

The nerm of 1+ @ must be smaller than one so that
o

the series converges.

BASIC IDEA OF VARTATIONAL ITERATION
METHOD

To clarify the basic ideas of VIM, we consider the
following differential equation:

Lu+Nu=g/(t) (12)
Where:
L = A linear operator
N = A nonlinear operator
g (t) = A homogeneous term

According to VIM, we can write down a correction
functional as follows:
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)+ Nii, (1)~ g(r))dr(B)

(1,3

Where, 4 is a general lagrangian multiplier which can
be identified optimally via the variational theory. The

n+1

subscript n indicates the nth approximation and u, is
considered as a restricted vanation, 1.e., 9 i, = 0.

Example 1: We consider a homogeneous linear wave

equation:
utt :uxx 7(p(u:ut:ux:uux:u2)+F(X:t) (14)
¢ =0, F(x,t)=0.
With the initial and boundary conditions posed are:
ulx, 0)=sinx, (15
u(x,0)=u(0,t)=u(mt)=0
Exact solution of this equation is:
u(x, t) = costsinx (16)

APPLICATION OF HOMOTOPY-PERTURBATION
METHOD

To solve Eq. 14 by means of HPM, we consider the
following process after separating the linear and nonlnear
parts of the equation;, we apply Homotopy-Perturbation
to Eq. 6.

A homotopy-perturbation  method can  be
constructed as follows:
82 o*v d'v v
Hv.p) = (1P = =)+ ply ——5)=0 (17

Substituting Eq. 10 into 17 and rearranging the
resultant equation based on powers of p-terms, one has:

2

P kD=0 ag)
P’ .gt—zv (x,t)— ;;22 v, (x,t)=0 (19)
P 2 —v,(x.t)- 2 —V(xt)=0 (20)

o

With the following conditions:

122

v, (x,0) =sinx, %VD(X,O) =v, (0,0)=v, (mt)=0

v.(x,0)=0, %Vl(X,O) =v.(0,t)=v.(mt)=0, i=12,..

(21)

With the effective initial approximation for v, from the
conditions (21) and solutions of Eq. 18-20 may be written
as follows:

v, (X, t)=sinx (22)

v, (x,1) = —%(Sinx)‘[2 (23)
LR 24

v, (x,t) = ) (sinx)t (24)

In the same manner, the rest of components were
obtained using the maple package.
According to the HPM, we can conclude that:

u(x, O =lmvix )= v, O+ v (x0+.. (25)

p—1

Therefore, substituting the values of v; (x, ), v, (x, t)
and v, (x, t) from Eq. 22-24 into 25 yields:

1

71:4 + (26)

. 1 .
u(x,t):smx(lfat%r ...y=sinxcost

APPLICATION OF VARTATIONAL ITERATION
METHOD

w D= t)*fnl(au L(x, ’I:) 8t (X T))d (27)

Tts stationary conditions can be obtained as follows:

' _ — " — 28
1=2 =0, ;\“’E:t_ 0. A= (28)
We obtamn the lagrangian multiplier:
A=1t (29)

As aresult, we obtain the following iteration formula:

8zun (x,1)
GXZ

dt

U, (xt=u,(x, t)+I(T t){au (%1

(30)
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Now we start with an arbitrary initial approximation
that satisfies the initial condition:

1, (%, t)=sinx (31)

Using the above variational formula (30), we have

u,(x,t)= Uo(X,t)‘FE(T —t)|:62u0(x’1) _ azuo(xaf)}dt

én? &
(32)

Substituting Eq. 31 into 32 and after simplifications,
we have:

u,(x,t) = —%sin(}{)(—2+ t?) (33)
In the same way, we obtain u, (%, t) as follows:

. 1 1 .
u,(x,t)=u(x,t) =sinx(1- Etz +£t4 +....)=sinx cost

(34)

And so on. In the same way the rest of the
components of the iteration formula can be obtained.

As it can be seen, using these two approximate

methods lead to the exact solution (Fig. 1) using more
iteration.

Example 2: We consider the first-order non-linear wave
equation. The equation of the form:

u, =u, —@uu,u,uu,u’)+Fxt), (35)
u(x,0)=x,p=uu,F(x.t)=0

With the exact solution of:

u(x,t)zlxi (36)

APPLICATION OF HOMOTOPY-PERTURBATION
METHOD

A homotopy-perturbation method can  be

constructed as follows:

_p YTy, [0 0 ) |-
H(v,p)={1-p) P )+p[aV(X,tHV(X,t)(@(V(X,t)J—O

(37)

Fig. 1: 3D obiained resulis of u(x,t) by the HPM, VIM and
the exact solution

Substituting Eq. 10 into 37 and rearranging the
resultant equation based on powers of p-terms, one has:

P
p0 :?Vo(x,t):ﬂ (38)

pl%vl(x,t)+v0(x,t)[§v0(x,t)]=0 (39)

p2 : §v2 0L, t) + v, (L t) [;{vl (X,t)J +v,(x,t) [;vo(x,t)J =0

(40)
o) o)
p3 : uz(x,t)[—vo(x,t)J + VO(X,t)(—Vz(X,t)J +
ox % (41)
t 0 t 0 th=0
vi(x,1) EVI(X’ ) +(EV3(X, N=
With the following conditions:
v(x,0)=x (42)

v,(x,0)=0, i=12,...

With the effective initial approximation for from the
conditions (42) and solutions of Eq. 38-41 may be writien
as follows:

v (x, t)=x (43)
vy (x, ) = xt (44)

v, (%, t) = xt? (45)
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v, (%, t) = xt® (46)
In the same manner, the rest of components were
obtained using the maple package.
According to the HPM, we can conclude that:

u(x, t) = limv(x,t) = v (x,t) + v, (x,t) + .. 47

p—1

Therefore, substituting the values of v, (x, t), v, (%, t),
v, (%, t) and v, (%, t) from Eq. 43-46 into 47 yields:

U(X,t):X(].*tthz*tg‘F....):L (48)

1+t

APPLICATION OF VARIATIONAL ITERATION

METHOD
v du (x,1) aun_(x,1)
U, xt)=u (xt)+| A| ——+u _(x,1)——"|dt
it (00) n()jo[ p. WO
(49)
Its stationary conditions can be obtained ag follows:
1+ 4[,_,=0 (50)
Ao =0

The lagrangian multiplier can therefore be identified as:
-1 (51)

Ags aresult, we obtain the following iteration formula:

u (x.=u(x.t)+ _Lt (,1)(6'%;(,"5) N

au (x,1)

u, (x.1) ) dt

(52)

Now we start with an arbitrary initial approximation
that satisties the initial condition:

u (x, ) = x (53)

Using the above variational formula (52), we have

ou,(X,1)

u1(X>t) = uo(X>t) + _[Ot(_l)[T+ uo(Xat)—auO(;:’T) Jd‘l:

(54

Substituting Eq. 53 into 54 and after simplification, we
have:

(35)

u, (%, t) =x-xt
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Fig. 2: 3D obtained results of u(x,t) by the HPM, VIM and
the exact solution

In the same way, we obtain u, (x, t), u, (x, t) as
follows:

u,(x,t)=x —Xt—%Xt3+Xt2. (36)

(57

(k) =uE ) =x(1-t+t* ' +..) - X
1+t

And so on In the same way the rest of the
components of the iteration formula can be obtained.

Ag it can be seen, using these two approximate
methods in solving this equation also lead to the exact
solution (Fig. 2) using more iteration.

Example 3: We congider a second-order non-linear wave
equation:

u, =u_ —@u,u,u u_u’)+Fx,t)

(58)
p=u’—w,, F(xt)=0
With the initial and boundary conditions posed are:
u(x.0)=u,(x.0)=e"0<x <L (59)
u(0,t)=¢',t >0,
Exact solution of this equation is:
u(x,t)=¢e" (60)

APPLICATION OF HOMOTOPY-PERTURBATION
METHOD

A homotopy can be constructed as follows:
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H(v,p)= (1 p)(6

I+ P(—V(X -
(61)

Z

%v(x, D+ vix 1) - V(X,t)(&v(x,t)) =0

Substituting Eq. 10 inte 61 and rearranging the
resultant equation based on powers of p-terms, one has:

2

P %VU(X,t) =0 (62)
( TVt - ( Vo (3,11 — V(X 1)
(63)
(%VD(X,’[))+VD(X,U2 =0
.. 9
p: EVZ(X’ 0+ 2v, (v, (% 1) - v (x.t)
9 _ 2 - (64)
(aXVn(XJ)) VD(X,t)(aXVI(X,t))
(;722\’1 (x,t)=0
With the following conditions:
v,(x 0)—2\! (x,0)=¢e™, v,(0,t)=¢'
0 > - 6t 1} > - > [T RSt R A
0=x<Lt=0
VI(X,O):%VI(X,O):O, v(0t)=01=12...
(65)

With the effective rutial approximation for v, from the
conditions (65) and solutions of Eq. 62-64 may be written
as follows:

Vo (%, 1) e® (t+1) (66)

v,(x,t)= lext3 + lext2 (67)
& 2

Vz(x,t):%ex(;—ot5 +%t4) (68)

In the same manner, the rest of components were
obtained using the maple package.
According to the HPM, we can conclude that:

u(x,t) = limv(x,t) = v (1) + v, xt) + ..
p—1

(69)
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Therefore, substituting the values of v, (x, 1), v, (x, t)
and v, (x, t) from Eq. 66-69 yields:

EZ+t

ux,t)y= ex(l+t+%t2 +%e"t3 +Lt“ +Lt5 +..)=¢

24 120 )=

(70)
Application of variational iteration method

8u(x1:) 8u(x1:)
6}(2

U, (30 = 1, (6, 0+ [ AL
éu (X T)

(71)

u, (%, 1) —u(x, O —")dr

Tts stationary conditions can be obtained as follows:

1-2 (72)

=t=0 ;\“’E:t: R

The lagrangian multiplier can therefore be identified as:
A=t (73)

As aresult, we obtain the following iteration formula:

U, (0 = 0, (5,0 +
[ [au (XD du (kT

8X2
Now we start with an arbitrary initial approximation
that satisfies the imtial condition:

o, (%,1)
ax

0, (D -y () |de

(74)

u,(x,t) = e*(t+1). (75)
Using the above variational formula (74), we have:
U, (x D=0, 0+
(@ t){a WD WD)y —uﬂm)(%)}dr
(76)

Substituting Eq. 75-76 and after simplification, we have:
ul(x,t):ée}{(6t+6+t3+3t2) (77)

In the same way, we obtain u, (x, t), U, (x, t) as follows:

u,(x,t)= ieX(lzot +120+120t° + 60t + £ + 5t*) (78)
: 120
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the exact solution

u(xty=u(x, ) =e*(L+t +lt2 +
2 79)

1 1

—e"t’ + —t*

1
+—t"+.)=e""
6 24
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And so on. In the same way the rest of the
components of the iteration formula can be obtained.

As it can be seen, using these two approximate
methods in solving this equation also lead to the exact
solution (Fig. 3) using more iteration.

CONCLUSION

The homotopy perturbation method and vanational
iteration method have been successfully used to study
three types of partial differential wave equations. These
equations describe the propagation of a wave
{disturbance) and it arises in a wide variety of physical
problems. The results obtained here were compared with
the exact solutions. Tt can be easily seen that applying
these two methods to the mentioned equations were led
to the exact solution in all examples, so the results
revealed that the homotopy perturbation method and
variational iteration method are powerful mathematical
tools for solutions of differential equations in terms of
accuracy and efficiency.
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