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Floquet Scattering Through a Heterostructure in a Time-Periodic Potential
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Abstract: We studied the resonances of a one-dimensional potential barrier driven by an external periodic force
considering the Position Dependent Effective Mass (PDEM) formalism. The Floquet S matrix will be constructed
then the transmission probabilities of our system are calculated. We found that the change in the effective mass
of the square well does not vary the energy level where resonance occurs.
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INTRODUCTION

The study of time-periodic quantum models is
usually carried out within the context of Floquet theory
(Kazanskn ef al., 1976; Holthaus and Hone, 1993, Wagner,
1997; Azbel and Tsukernil, 1998). Floquet Eigen states are
Eigen states of the one-period time evolution operator and
are the natural states for describing time-periodic systems
(Buttiker and Landauer, 1982; Stovneng and Hauge, 1989).
Some of the Floquet states will be metastable and
localized in phase space. These states are known as
resonances. The resonances are metastable states for
which the electrons are trapped by the localized potential
(Timberlake and Reichl, 1999). The driving field induces a
series of nonlinear resonances of odd order in the square
well system, with higher-order resonances occurring at
lower energies (Lin and Reichl, 1986; Fuka et al., 1995).
This quantum system is periodic in time and can be
described in terms of Floquet eigenstates, which are
eigenstates of the one-period time evolution operator.

We choose the model of sinusoidally driven square
well because of its simplicity and its commection with
experimental work n solid-state physics. The driven
square well serves as a highly simplified model for
experiments mvolving electrons confined in
GaAs/AlGa As wells and subjected to intense
far-infrared radiation (Galdrikian et al., 1995; Birnir et ai.,
1993). This model 1s also advantageous because it has
been the subject of many theoretical studies, both
classical and quantum. We consider the quantum barrier
consisting of two static regions I and IIT with electron
effective mass p,* and a central driven quantum barrier
region IT with electron effective mass p,;*. We let several
values of u* and p* m each region. The values of the
effective masses used are: 0.067 m, for GaAs, 0.092 m, for
AlGaAs and 0.15 m, for AlAs.

The proposed Hamiltoman 1s periodic n time with
period 2m/w. Hence, a Floquet approach 1s used. Any
solution of the time-dependent Schrédinger equation are
expanded as a linear combination of time-periodic states-
called Floquet states of the system-with coefficients
oscillating in time as exp(-iEt) where E, is called the quasi-
energy of the Floquet state.

A Floquet Scattering matrix has been constructed by
Li and Reichl for periodically driven mesoscopic systems
(Liand Reichl, 1999). The Floquet S-matrix connects the
outgoing propagating modes to the incoming propagating
modes and is a unitary matrix which conserves
probability.

One of the interesting features of localized time-
periodic potentials is the presence of resonances or quasi-
bound states, which could be thought of as electrons
dynarmically trapped by the oscillating potential (Frensley,
1990; Timberlake and Reichl, 1999; Lin and Reichl, 1986).
Tt is well known that the quasi-bound states of an open
system are related to the true bound states of the
corresponding closed system (i and Reichl, 1999;
Frensley, 1990). In this study, we present a technique
which 1s as the direct solution of an eigenvalue problem,
to compute the positions and life times of quasi-bound
states and the energies of transmission ones and zeros.

We are going to solve the time-periodic Schrodinger
equation for the proposed system using the Floquet
theorem and then construct the Floquet S matrix. Also we
will study the behavior of transmission probabilities for
the proposed one-dimensional (1D) modulated square
potential and study numerically the transmission
resonances for both different values of the effective
masses of the well region and its neighbors cases.

The Floquet S matrix: We consider electrons transmitting
through a modulated potential which extends from
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-L/2 to L/2 subjected to the harmonic driving force
V, cos(wt). By the Floquet theorem the seolution of
the time-dependent Schrédinger equation could be
converted mnto a time-independent Eigen value problem
(Li and Reichl, 1999; Bagwell and Lake, 1992). The
wave function outside the barrer consists of many
Floquet sidebands with energy spacing hw. The wave
function m these regions is a superposition of an infinite
number of these sidebands and can be written in regions
I and II, respectively as:

wl(x}t)= i (Aln olkax +AT¢ a—)knx)e—ﬂi;n:/ﬁ (1)

n=-oa

'LDIII(X’t): i (Bln gk +BT, e+1k,x)eﬂﬂ,¢/ﬁ (2)

n=-oa

the expression for the Floquet state inside the oscillating
region J(x,t):

—1Eot/B o :
'L]JH(X,t) — e F / ngmd](x) B—mwt} (3)
Where:
¢(X)= i (ame'qu+bma_lq]:ux)Jn7m(E) (4)

m=—co Fus
A and B, are the probability amplitudes of the incoming
waves from the left and right, respectively, while A" and
A" are those of the outgoing waves and

T o
o

Matching the wave fimetion Y(x,t) and its derivative at
the boundaries x = +1./2, finally we get the following matrix
equation:

2

o
m:J;’LH (EF+mm7Vo)=

2k, (AT £ ]3',1):‘3_11‘]1["f2 =

oo [(rk, + ag)e7="?
EHk, — g, )e=""

v s)

J (Lot
vl

m=—ca

where,
C*=a_=b_ and q:u—‘j.
K

following the notations and approach by Al-Sahhar
(2006), the last equation can be written by the matrix

format as:

MZ O =M,.(A, £ B, (6)

The probability amplitudes of the outgoing waves written
1n the matrix form are:

A°=M} a+My b—M, Al
A° =M, A+ M, B

(7

And

B=M, a+M} b—M B
B =M, A' + M, B

(8)

Combining E¢. 7 and 8, we obtain we obtain the matrix S

Ai
B

A0
Bl

MAA MAB
MEA MEB

©)

Each element S, of the matrix S gives the probability
amplitude that the electron 1s scattered from Floquet
sideband m to sideband n [n,m £(—ee, «)]. If we only keep
the propagating modes [n,m £(0, )], then we obtain the

scattering matrix S,
30 Al
28R o)
B® Bl

Transmission resonances: The transmission coefficient
T is given by:

o ky,. 2

n:0m§0g|tnm|
where, t,, and 1, are for propagating modes incident from
the left. Thus, we consider an infinite number of incoming
and outgoing waves with the Floquet energy spacing of
hw between adjacent channels and compute the
transmission coefficients. Keeping the frequency of the
time periodic field constant. We plot the transmission
coefficient T as a function of electron incident energy E
(Fig. 1), through (Fig. 2) for some heterostructures with
different values of electron effective mass.

In case that the effective mass of the square well
pp* = 0.067m,, (Fig. 1a) the system has only one Fano
transmission resonance which for small amplitude of the
dnving field 1s associated with the n = -1 localized Floquet
evanescent mode which has its origin in the bound state
of the undriven system. A resonance occurs at E = 0.825
meV, corresponding to abound state energy -0.175 meV,
which 1s in a good agreement to the calculated value up to
two significant digits. The binding energy of the ground
state i the field-free case for the deep quantum well
(V,=-20meV,L=10A)E, =-0.174 meV.
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Fig. 1: (a) The transmission coefficient T as a function of

mcident energy for system parameters hw = 1
meV, V,= 20 meV, V, = SmeV, L = 104 and the
effective masses of the well region 0.041, 0.092 and
0.15 m,. A resonance occurs at E = 0.825 meV
and (b) The transmission amplitudes of
sideband |t;|* for the same parameters as in (a)
shows the accumulation of electrons in the
bound state

The Fano-resonances, which are indicated by a dip
or a transmission peal/dip in the coefficient T, correspond
to quasibound states of the system. We now focus on the
transmission coefficient T and discuss how it probes the
quasibound states of the system.

At the energy level where the resonance occurs,
electrons in the incident channel (E = hw-|E, |= 0.826 meV)
can emit photons and drop to the bound state. Also
electrons in the bound state can absorb photons and
jump to the incident channel (or other Floquet channels).
A transmission resonance takes place when the energy
difference between the incident chammel and the bound
state 18 equal to the energy of one or more photons.
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Fig. 2: (a) The transmission coefficient T as a function of
incident energy for system parameters hw = 1 meV,
V, = -20meV, V,= 5meV, L =10 A and the
effective masses in regions I and II, (where
p* = ug* and p* = 0067 m) (1) 0.041 m,
(2)0.067 m,(3)0.092m,and (4) 0.15m,and (b) The
transmission amplitudes of sideband |t ;|* for the
same parameters as in (a) shows the accumulation
of electrons in the bound state

When the effective mass of the square potential 1s
varied to take the other values 0.041, 0.092 and 0.15m_ T
has the same Fano transmission resonance (Fig. 1a). The
sharp rise (Fig. 1b) is due to the fact that the density of
states 1s very large at this bound state. The transmission
coefficient T as a function of electron incident energy E,
for different values of the effective masses in the regions
I and TI, the effective mass of the square well p,* =
0.067m, keeps unvaried (Fig. 2a). For this case the system
displays one Fano transmission resonance for each
configuration of the effective masses in regions I, IT and
ITI (E, = 0.8916,0.8258, 0.7632 and 0.61 50 meV). The bound
states are determined by E, = -(hw-E,), which are found to
be in good agreement with the calculated values (Table 1).
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Table 1: Comparison of the calculated bound state energy and that derived
from 8 matrix for %w=1meV, V; =-20 meV, V; = 5 meV,
L=104A

E,=-(hwo-E) Calculated (Calculated Ey)

E, meV meV E, meV -E, meV
0.041 m, 0.8916 -0.1084 -0.1069 0.0015
0.067 m, 0.8258 -0.1742 -0.1738 0.0004
0.092 m, 0.7632 -0.2368 -0.2376 0.0008
0.15m, 0.6150 -0.3850 -0.3837 0.0013

Note in Fig. 2a that the difference between the
transmission coefficients T, for various effective masses
becomes more prominent (high up) with decreasing p*
and py*. The reason 1s that as ™ and p,* are decreased
more Floguet channels interfere with the incident electron
wave and significantly contribute to the total transmission
coefficient.

CONCLUSION

The change n the effective mass of the square well
does not vary the energy level where resonance occurs
and hence the bound state energy of the well can be
calculated. Tn calculating the bound state energy one has
to use that of the neighbors of the quantum well A
comparison of the transmission coefficients reveals that
as the effective mass is decreased the higher order
resonances, for E > hw, become stronger.
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