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Connectivity Graph Approximation Using Modified Manhattan Distance in
Mobile Ad Hoc Networks
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Abstract: In this study, we focus on dynamic networks, where moving agents produce varying connectivity
graphs n time. We use the velocity information of every agent to develop a fast algorithm to approximate the
connectivity graph of dynamic networks. Also we used mean degree distribution instead of degree distribution
to investigate congestion/interference of network when approximate method is used. We introduced a
modification factor for connectivity distance, R in Manhattan measure to increase the accuracy in a wide range
of R. The results for two random distributions of agents based on Monte Carlo simulation are compared to the
present real connectivity method to show the superiority of our approach.
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INTRODUCTION

Different terms such as comnectivity graphs, link
graphs and commumcation graphs are used
interchangeably in the literature for graphical models
that capture the local limitations of sensing and
commumication m decentralized networked systems
(Muhammad et al., 2005). Computation of connectivity
graphs has developed as a key problem in various
engineering branches specially in communication and
control. For example, control of Unmanned Air Vehicles
(UAV) based on decentralized control has developed in
recent years. Decentralized control approach is a result of
studying swarms of msects which offer clear examples of
self-organized, emergent behavior (Guadiano and Clough,
2003). In the problem of coordinating multiple robots, a
representation of the configuration space appears
naturally, by using graph-theoretic models to describe the
local mteractions in the formation (Muhammad and
Egerstedt, 2005a; Muhammad ef al., 2005). In these cases,
graph-based models serve as an interface between the
discrete and the continuous. Notable results for these
problems have been presented (Olfati Saber and Murray,
2003; Mesbahi, 2002; Jadbabaie et al., 2003; Tanner et al.,
2003). In Muhammad et al. (2005), several applications of
connectivity graphs and their dynamics are presented.

In simulating large mobile networks, a main problem
15 the ugh cost of storage requirements. It may even be
impossible to model such networks due to the huge extent
of storage requirements.

In modeling such networks, it is necessary to
determine the evolving connection between nodes. In
other words, we must dynamically determine who can
communicate with whom. This will be called graph
connectivity in the rest of the study. As the number of
nodes in the network is increased, routing protocols
which need to determine the connectivity graphs can
grow quadratically. Guadiano and Clough (2003) and
Carling et al. (2003) discuss that if the existence of a link
between two agents corresponds to certain geometric
relations such as the distance between them, the graphs
will be dynamic in time m cases where agents are mobile.
In other words when nodes move, the distances between
them change. This results in the breaking of some existing
links and the formation of some new ones in time.
Therefore, it 1s necessary to compute the connectivity
matrix over and over again. Thus for the simulation of
large dynamic networlks it is important to develop faster
graph connectivity determination techniques with a
reasonable degree of accuracy (Muhammad and
Egerstedt, 2005b; Barrett et al., 2004).

In Muhammad and Egerstedt (2005b), the limitations
in formation of connectivity graphs are discussed and
topological limits are introduced and mm Barrett et al.
(2004) some approximate methods for determining
connectivity graph are discussed.

In this study, we discuss the problem of determining
connectivity graphs of dynamic networks using
approximate methods and introduce a new efficient
algorithm for approximating the connectivity graph. This
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method has a good accuracy while it requires less
computation and 15 much faster than previous methods.
Results are presented based on Monte Carlo simulation
using default nformation about the velocity of each
agent. Also we used mean degree distribution instead of
degree distribution to mnvestigate congestion/interference
of network when approximate methods are used. We
compared the performance of these measures for two
different distributions of nodes.

REAL AND APPROXIMATE CONNECTIVITY
GRAPHOS

The most realistic model of connectivity of agents
which Barrett et al. (2004) label real connectivity is based
on calculations using Buclidian distance between nodes
and comparing the obtained results with radio distance.
This model is based on two-ray ground propagation
model where the received power is inversely proportional
to the square of the distance up to a limiting distance and
is inversely proportional to the fowth power of the
distance beyond that threshold. In this model we do not
consider radio interference effects. Therefore the real
model inherently has some approximation. For two nodes
N; (%, yo) and N; (x,, y), the Buclidian distance is as follows:

Dy (N, N = [ (x5 * + (yiey) *] (1

Radio distance R, is defined as the connectivity range
for every node which is compared by Euclidian distance
between a pair of nedes N, and N,

Dy (N, N;) < R =2 N;is connected to N; (2)
De (N, Nj)> R == N.is not connected toN;  (3)

In the remainder of the study we name this method as
the real method and use it for comparison with our
proposed algorithm. In order to save computational time,
R’ is used instead of R for comparison with the square of
Euclidian distance. This saves the computation of root
square for computing the distance between every pair of
nodes. Computationally this model
subtractions, two multiplications, an addition and a
comparison which must be carried out for each pair of
nodes. Therefore, the total amount of computational time,
T for nnodes will be:

mcludes two

Te=(T,+ 2T, + T, + T.)* [“} 4
2
where, T, T, T, and T, are the computational times of a
subtraction, a multiplication, an additon and a
comparison, respectively.

Using the number of clock cycles required for the
execution of instructions of Intel Pentimn 4 processor
(Tntel Co., 2006) results in:

Te=(2*3+2%54341)* (nj =10(n’ +n) clock cycles (3)
2

This is
radio range 1s equal for all nodes in undirected networks.
Barrett ez al. (2004) have investigated the performance
of some approximate measures like Manhattan distance
metric connectivity, k-means cluster connectivity and box
comectivity for determming connectivity graphs. They
have shown that the Manhattan distance is one of the
best approximate measures for computing the
connectivity graph of undirected networks (Barrett et al.,
2004). We have based our methed upon this metric and
have implemented a fast algorithm which reduces the
computational time in dynamic networks. The Manhattan
distance for two nodes N, and N, is simply the sum of
component-wise distances:

the case for an undirected network since

RMI] - ‘XI-XJ‘ + |Y1'YJ‘ (6)

The computations for this metric include two
subtractions, an addition and three comparisons being
two comparisons for the absolute values and one for
comparing R,,; with R for each pair of nodes (Barrett et al ,
2004). Therefore the total amount of computational time
Ty for nnodes will be:

Ty= (2T, + T, +3T)* @ (7

Which on a Pentium 4 Intel processor will require
Ty=(2%3+3+3*%1)* [n] =6 (n’ +n) clock cycles (8)
2

Comparing the results of Eq. 5 and 8 shows that by
using Manhattan measure mnstead of Euclidian measure
the computational time reduces by 40%. This reduction
can be appreciable when the number of nodes is very
large because the computational time 1s proportional to
the square of n.

COMPARING CONNECTIVITY GRAPHS:
METRICS AND MEASURES

In order to evaluate the efficiency of our method well-
established techniques for comparing radio connectivity
graphs were used and the connectivity matrices (real and
approximate) in both static and dynamic networks were
compared. In each case after determining the connectivity
matrices, they were compared with each other. Two
different approaches were used for comparing the graphs.
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The first comparison approach which is more statistical is
based on degree of nodes. In the first approach two
different methods are used. In the first method degree
distributions of nodes for a network are determined using
real and approximate measures. Degree distribution shows
the number of nodes which have different possible
degrees m the network. The results are compared to
mvestigate congestion of network when approximate
methods are used. Here, two graphs are considered to be
similar if they have the same degree distribution. Also
mean degree of nodes 13 used as a measure. In this
method mean degree of nodes for different connectivity
distances 1is determined using real and approximate
methods. Two graphs are considered to be similar if
they have the same mean degree distribution for different
connectivity distances. In the second approach the
resultant comnectivity matrices are compared. Tn other
words, links are compared one by one and Hamming
distance between their connectivity matrices 1s used. A
comnectivity matrix for each graph 1s set up where every
1 in the matrix shows the connection between the nodes
corresponding to the related row and column nodes.
Hamming distance from one binary vector to another 1s
the number of corresponding elements which differ. For
example H ([1101], [0110]) = 3.

Obviously the size of graphs to be compared must be
the same. A deficiency of the Hamming distance is that it
1s not invariant with respect to graph size and one cannot
draw any sound conclusions from it when comparing
networks of various sizes. If we divide the Hamming
distance by the number of elements of the connectivity
matrix we will have a metric that is mnvariant with respect
to the size of the graphs. Barrett ef al. (2004) called this
metric the percent Hamming distance and denoted it %H.

0% = I * 100/ @)

MONTE CARLO SIMULATION IN STATIC AND
DYNAMIC CASES

Monte Carlo simulations were carried out in static
and dynamic cases. In each case two spatial distributions
were used for the nodes in the network-namely normal
and umform. The region occupied by the nodes 1s
considered to be a 1 km® for uniform spatial distribution
and a circle with a radius of 2.5 km for normal spatial
distribution. Normal and uniform distributions were used
as representatives for umformly and non-uniformly
distributed networks. In each distribution, the mean
degree (D) distribution, degree distribution and the
percent Hamming (%H) measwures for the real and the
approximate methods were determined. In static case, the

performance of Manhattan method and modified
Manhattan method were experimented using Monte Carlo
simulations. The acceptable performance of Manhattan
measure for nodes which are distributed normally and
uniformly is shown. Then a modification factor is
introduced to improve the performance of the Manhattan
measure and the results are used in the dynamic case to
implement our algorithm.

Monte carlo simulations in static case: In order to carry
out the Monte Carlo sinulations in static case two
networks were constructed whose nodes had a spatially
normal and uniform distribution, respectively. In each
network, the mean degree of nodes for every R was
caleulated from which the mean degree distribution of
nodes was determined. For degree calculation, we used
three different methods: precise method using Euclidean
distance, approximate method using Manhattan distance
measure and Manhattan measure using modified
comnectivity range. We used a zero mean unity variance
normal distribution in which more than 99% of nodes are
located in a circle with a radius of 2.5 km. We calculated
real and approximate measures for a range of R from
0.01 to 1.4 km (diagonal of 1 km*) for uniform and 5 km
for normal distribution with 0.01 km increments. Circular
and square regions are representatives for two different
regions of nodes m two dimensional space. We used
averaging of results to mimimize changes. For every R,
computations were repeated 10 times and averaged,
yielding an rms error of less than 5%.

The degree distribution should be calculated for a
specific R. For R = 0.25 km the degree distributions are
shown in Fig. 1. The networks include 1000 nodes.
Obviously m both distributions real and approximate
results have many differences. Using approximate
Manhattan measure the maximum frequency of occurrence
of a node with a degree specified on the horizontal axis
increases and generally the degree of nodes decreases
according to real measure.

The mean degree distribution using real and
approximate methods are shown in Fig. 2. Both normally
and uniformly distributed networks have the same pattern
of mean degree distribution versus R distance, but with
different scales. Obviously when R 1s increased, the mean
degree of nodes is increased because the maximum radio
range is increased and more nodes can communicate
together. In the normally distributed network, mean
degree distribution reaches its maximum at R~5 kan, but in
a uniformly distributed network, it reaches its maximum at
R~1.4 kim. As can be seen from Fig. 2, real mean D
distribution 18 bigger than or equal to the approximate
mean D distribution for the same R. Also Fig. 2 shows that
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Fig. 3: RMS error variations versus modification factor for different N for (a) normal and (b) uniform spatial distribution

of nodes

approximate results are less than real results for similar R
and both curves are incremental. So we can use bigger R
in approximate calculations to decrease error. We tried to
find the best modification coefficient m to minimize rms

error. The average rms error for different values of m was
calculated in each distribution. The results were averaged
for different values of R. Figure 3 shows the results for
different number of nodes. In Fig. 3a, minimum rms errar

1465



J. Applied Sci., 8 (8): 1462-1470, 2008

40 . . — T
(a) Rm = 1.26R, Normal dist
35 ,:?f P Real distribution coooo
¥ 00‘5'3'(: o] & Mean value =15 49
P G p e
30 & = (3;0@.1; Of'ﬁ? Approzimate dist. wm
Mean value=15.63
g 253 5
Z », [I05 erTar = 142
£ 20
-] A
Z A
15 ’
]
10 “
?.
b Ty,
5 £
e,
0 Fl H 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Degree

20

R = 1.27R, Uniform dist. (b)
18} Real distribution coooo T
16| Mean value=15510
14 | Approximate dist, e C%
] Mean value =159.23 % o
41zt
ms errer = 1.11 o .%
10 .
8 L
6 k
4 L
2t
0
0 80 100 150 200 250
Degree

Fig. 4: Degree distribution for (a) normal and (b) uniform spatial distribution of nodes resulted from modified approximate

Manhattan and real methods

Mean D distributions for normal distribution of nodes

70 g Real
d Approximate ++
Em=127TEK

0 05 1 13 2 25 3 35 4 45 3

R distance (> 100 m)

Degree

Mean D distributions for uniforrm distribution of nodes

100 : : : :
o0 | ™ MW
80| M@f“

T0r Agl Real
P

Approximate +++
60t iy

Em=126R
50 ¢ *f'

40t
30|
20 £
10}

0 . . . . . .
0 0.2 04 0.6 0.8 1 1.2 14

R distance (> 100 m)

i
“a,
s,

Fig. 5: Mean D distribution for (a) normal and (b) uniform spatial distribution of nodes using modified approximate and

real methods

for different N is for z = 5 and som = 1.26 and in uniform
case (Fig. 3b), it is satisfied for z = 7and som = 1.27.

For R, = 1.27R in uniform distribution the best
similarities are seen between real and approximate results
because the rms error is minimum. In normal distribution
for R, = 1.26R minimum rms error results.

The degree distribution curves using modified R in
approximate Manhattan measure are shown in Fig. 4
which seem very similar to real one in both spatial
distributions of nodes. Therefore modified approximate
measure has negligible effect on congestion/interference
characteristics of network.

Figure 5 shows the mean degree distribution curves
using modified R which decreases rms error appreciably
in both distributions. Modified approximate measure
has negligible effect on congestion/interference
characteristics of network as shown in Fig. 5. Similar
results from Fig. 1, 4 and Fig. 2, 5 show that mean

degree distribution versus R can be used as a
mnterference/congestion measure 1instead of degree
distribution.

In Fig. 6, maximum rms error and rms error curve
limited area are compared for traditional and modified R.
In normal distribution rms error curve limited area
decreases by 7.17 times and in uniform distribution it
decreases by 5.94 times, as shown in Fig. 6a and b. Also
maximum error s decreased by 5.43 and 7.16 times for
uniform and normal distributions of nodes, respectively.

We determined the connectivity matrices for every R
by real and approximate measures and compared them
using the graph difference metric, %H. In Fig. 7, curves of
%H using traditional and modified R for both distributions
are shown. It can be seen that the maximum dissimilarity
in the performance of the approximate method using
traditional R is about 17.5% in normal distribution of
nodes, while it is only 3.6% when using our modification
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factor for connectivity range, R, = 1.26R. Also for uniform
distribution of nodes as shown in Fig. 7b, maximum
dissimilarity for traditional R is about 17%, while it is only
3.5% when using our modified measure for R =1.27R.

This shows that using our modified Manhattan
measure, maximum dissimilarity reduces by 4.87 times in
uniform distribution and by 4.61 times in normal
distribution of nodes.

Monte carlo simulations in dynamic case: In previous
section a modification factor for R was introduced to
improve the accuracy of approximate Manhattan measure.
We name this method as modified Manhattan in the
remainder of the study. In order to carry out the Monte
Carlo simulations in dynamic case our experiments were
set up with nodes with specification (X, v, v, 0) in which
v is the velocity and 6 is the angle of movement. Velocity
v is the distance by which a node moves in 0 direction in
every step of the calculations. Parameters v and O are
determined based on uniform distribution because only

the number (or percentage) of low speed nodes is
important. In other words the time consumption of our
algorithm is based on the number of low speed agents and
the type of their distribution does not affect the results. In
order to generate 0, the random number § which is
limited between [0, 1], is multiplied by 2. Also in order to
limit the velocity of each node, ¥ which is similar to § is
multiplied by a velocity coefficient, C, which is less than
one. This means that the velocity, v, of every node is the
result of multiplication of v, C, and the size of the square
region in which the nodes are distributed. In every step,
nodes move to a new location based on their velocity and
direction and their positions are considered to be fixed
during the calculations. To speed up the calculations low
speed nodes are considered to be stationary. Therefore,
the calculations are not repeated for them in every step.
The position information for the nodes must be refreshed
in every so many steps based on their speed and
acceptable error.
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method using modified Manhattan measure for
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of Vi,

We examined the results by changing R and C, and
determined Hamming measure using real and approximate
methods. In Fig. 8, %H curves for uniform distribution of
nodes are shown for various conditions as shown on the
figure. As shown, based on the conditions, different
curves are obtained but our discussion is based on
realistic conditions.

As a realistic example, maximum v (or C,) was
considered 0.01 km per step of calculations and
R = 0.25 km as considered by Barrett e al. (2004).
Minimum velocity for nodes which are considered non-
stationary in our algorithm was selected as 0.001, 0.0025,
0.005 and 0.0075 km per step of calculation. Our velocity
based method was implemented using modified R
Manhattan method for the above chosen velocities of V_,
to show the low level of dissimilarity. In each case the
connectivity matrix was determined and compared with
the real case. The dissimilarity between two connectivity
matrices being represented by %H is shown in Fig. 9. We

11

101 1

8t Velocity based using i
Modified R, Viyin =75 Viax 000

Traditional manhattan -

%H
~1

0 10 20 30 40 50 60 70 80 90 100

Steps of displacement

Fig. 10: Comparison of %H distribution for traditional
Manhattan method and a worst case of velocity
based using modified Manhattan method

can see as shown in Fig. 9 that dissimilarity increases as
we increase the minimum velocity as expected. The speed
of calculations also increases.

As shown, dissimilarity or error for V, less than
50%V e 18 no more than 5% during 100 steps of
calculations. As V,,;, increases, the speed of calculations
increases but its error decreases. For V,, = 75% V.. a
worst case is considered because the motion of 75% of
nodes 1s neglected and so the error maximizes. In this
case maximum dissimilarity is less than 11% for 90 steps.
Figure 10 shows %H for traditional Manhattan method
and this worst case of velocity based method using
modified Manhattan measure. As shown, before 20th
step, the accuracy of the worst case of our algorithm is
better than traditional Manhattan method while
dissimilarity in the next steps can be acceptable for some
applications.

According to acceptable error and speed
requirements for an application, refresh interval can be
selected. For example if we need less than 5%
dissimilarity, refresh interval can be selected 18 steps for

Viin = 75% V... or 80 steps for V,,;, = 50% V...
RESULTS AND DISCUSSION

In this study, a new approximate but fast method
for computing connectivity graphs for dynamic networks
has been presented. Connectivity graph computations
for a normally distributed and a uniformly distributed
network each with 1000 nodes have been compared.
Three different methods were used for approximating
connectivity: real method using Euclidean distance,
traditional approximate method using Manhattan measure
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and owr modified Manhattan measure using modified
comectivity range, R. The results were compared with the
real method to show the effectiveness of our proposed
modification factor for Manhattan measure to reduce the
approximation error.

Percentage Hamming distance (%H), degree
distribution and mean degree distribution versus R are
used as graph comparison metric and measures. Also
computational time and accuracy of methods are used to
compare the performance of methods.

In each network, degree distribution for a fixed
R (R = 250 m), the mean degree of nodes for a range of R
and connectivity matrices (graph) for every R were
calculated using different approximating connectivity
measures.

Static case: Performance of Manhattan measure is a
funetion of R. In our experiment for R~0.75 lan n umform
distribution and R~2.25 km in normal distribution,
maximum dissimilarity exists between real and approximate
Manhattan methods. Using modified approximate
measure, maxiunum dissimilarity 1s for R ~2.1 kmand R ~
0.7 km in normal and uniform distributions, respectively.

Maximum dissimilarities using both approximate
methods are nearly the same for both distributions and
the performance for the modified Manhattan measure 1s
much better as shown in Fig. 7. The results are
summarized mn Table 1. Dissimilarities of approximate
methods are shown as %H. The results obtained show an
appreciable improvement in accuracy using our modified
Manhattan measure.

Table 1: Comparison of %H for different methods

(8): 1462-1470, 2008

Also the rms error for our modified Manhattan
method is decreased. This 13 shown by comparing max.
rms error and rms error curve limited area of methods.
Max. mms error 18 decreased by 5.43 and 7.16 tunes for
uniform and normal distribution of nodes, respectively as
shown in Fig. 6 and summarized in Table 2.

Table 3 shows rms error curve limited area of
methods. The rms error curve limited area in using
Manhattan measure with modified R, is reduced by
7.17 and 5.94 times for normal and uniform distributions,
respectively as shown in Table 3. This measure requires
less calculations with respect to Euclidean measure while
it shows better accuracy with respect to traditional
Manhattan method.

Dynamic case: In the dynamic case where nodes
move based on their velocity, our  velocity based
method has acceptable accuracy as shown m Fig. 9. Less
than 5% dissimilarity during 100 steps of calculations for
Voin =50% V18 acceptable accuracy while computational
time is decreased appreciably. Calculation time for
determiming comnectivity matrices using  different
methods for 1000 nodes was measured. Table 4 and 5
show the comparison of computational time for three
methods for different repetition intervals between
refreshes. Different repetiion mtervals can be chosen
according to acceptable error and time limitations. The
results shown in Table 4 and 5 show that our method can
reduce the computational time required according to low
speed population of nodes and repetition mterval up to
14.64 times.

%H for modified
Methods %H for Manhattan measure Manhattan measure Fractional reduction of %H
Uniform distribution 18.5 38 4.87
Normal distribution 17.5 3.8 4.61

Table 2: Comparison of max. rms error for different methods

Max. rms error for

Max. rms error for Fractional reduction

Methods Manhattan measure modified Manhattan measure of max. rms error
Uniform distribution 38.0 7 543
Normal distribution 35.8 5 716

Table 3: Comparison of s error curve limited for different methods

rms error curve limited

Fractional reduction of
rms error curve limited area

rms error curve limited area
for modified Manhattan measure

Methods area for Manhattan measure
Uniform distribution 15.80
Normal distribution 26.87

2.66
3.75

5.94
7.17

Table 4: Computational time of different methods for 100 steps of calculations

Fractional reduction for  Computational time for our ~ Fractional recuction for
Computational time for ~ Computational time for  computational time method [velocity based computational time for
Low speed nodes Euclidian measure (msec) Manhattan measure (msec) for Manhattan method ~ Manhattan method] (mmsec) our method
75% 109945 28945 3.80 7509 14.64
500 109945 28945 3.80 14272 7.70
25% 109945 28945 3.80 21745 5.06
10% 109945 28945 3.80 26164 4.20
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Table 5: Computational time of ditferent methods for 50 steps of calculations

Fractional reduction for ~ Computational time for our

Fractional recuction for

Computational time for ~ Computational time for  computational time method [velocity based computational time for
Low speed nodes  Euclidian measure (msec) Manhattan measure (msec) for Manhattan method  Manhattan method] (msec) our method
75% 55018 15355 3.58 3909 14.07
50% 55018 15355 3.58 7236 7.60
25% 55018 15355 3.58 10945 5.03
10% 55018 15355 3.58 13182 4.17

The results reported here have been obtained using
Turbo C++ programming on an Intel Pentium D
3.00 GHz PC. Our method shows an increased accuracy
(Table 1-3) and an appreciable saving in time consumption
(Table 4, 5).
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