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Abstract: Tn this study, a hybrid learning algorithm for training the Dynamic Synapse Neural Network (DSNN)
to high accurate prediction of congestion in TCP computer networks 1s introduced. The idea behind this
technique is to inform the TCP transmitters of congestion before it happens and to make transmitters decrease
their data sending rate to a level which does not overflow the routers buffer. Traffic rate data are available in
the format of time series and these real data are used to train and predict the future traffic rate condition. Hybrid
learning algorithm aims to solve main problems of the Gradient Descent (GD) based method for the optimization
of the DSNN, which are instability, local minima and the problem of generalization of trained network to the test
data. In this method, Adaptable Weighted Particle Swarm Optimization (AWPSO) as a global optimizer 1s used
to optunize the parameters of synaptic plasticity and the GD algorithm 18 used to optimize the weighted
parameters of DSNN. As AWPSO 1s a derivative free optimization technique, a simpler method for the train of
DSNN is achieved. Also the results are compared to GD algorithm.

Key words: Synaptic plasticity, prediction of time series, gradient descent, AWPSO learning algorithm, hybrid
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INTRODUCTION

Due to traffic problems in router between Iran
Telecommunication Research Center (ITRC) and Data
Company, the amn of this study 1s prediction of mterval
traffic rate of that router (Box and Jenkins, 1976; Haltiner
and Williams, 1980; Tanenbaum, 1996). One of the reasons
of high rate of data loss in computer networks is the
mability of the network to predict the congestion and
inform the transmitters on time. The main objective of the
study 15 mntroducing a powerful learming algorithm for
training dynamic synapse neural network to high accurate
prediction of chaotic time series. We monitored the traffic
rate interval router in sampling of every thirty five minuets
in December, Tanuary, February and March 2007 in kilo
byte per second umnit (Fig. 1). This time series has 5000
samples and we used 3000 samples for traimng and 2000
samples for testing neural network. We considered two
learning algorithms for DSNN. These learning algorithms
include the GD learning algorithm which uses GD for the
training of both synaptic plasticity and weight matrix
parameters and the hybrid learming algorithm which
benefits both the PSO global search ability and the
computational power of the GD. Finally some sunulation
results are provided for a comparison between these two
methods.
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Fig. 1: The real data for traffic rate during Dec., Jan., Feb.
and Mar. 2007, with interval sample every 35 min

MATERIALS AND METHODS

The structure of dynamic synapse neural network:
Synaptic strength depends on three quantities: pre-
synaptic activity x,(t); a use-dependent term P,(t) which
may loosely related to pre-synaptic release probability
and postsynaptic efficacy W, (Natschlager et al., 2001;
Kim et al, 2003). Synaptic dynamics arise from the
dependence of pre-synaptic release probability on the
history of pre-synaptic activity. Specifically, the effect of
activity x;(t) in the j-th pre-synaptic unit on the i-th
postsynaptic unit is given by the product of the synaptic
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coupling between the two units and the mstantaneous
pre-synaptic activity as: x;(t) P;(t). W,(t). The pre-synaptic
activity x,(t) is a continuous value {constrained te fall n
the range [0, 1]). The coupling 1s m turn the product of a
history-dependent release probability Py(t) and a static
scale factor W,(t) corresponding to the postsynaptic
response or potency at the synapse connecting j and 1.
Note that W,>0 for excitatory synapses and W g0 for
inhibitory synapses. The history-dependent component
P;(t) is constrained to fall in the range (0, 1). This
component in turmn depends on two auxiliary history-
dependent functions f(t) and d,(t). The quantity d(t) can
be mterpreted as the number of releasable synaptic
vesicles; with activity and thereby
mstantiates a form of use-dependent depression. The
quantity f,(t) represents the propensity of each vesicle to
be released, like (Ca®) in the pre-synaptic terminal, it
increases with pre-synaptic activity x(t) and thereby
nstantiates a form of facilitation. f{t) models facilitation
(with time constant I, >0 and the initial release probability
U; € [0, 1]), whereas d;(t) models the combined effects of
synaptic depression (with time constant D;>0) and
facilitation. Hence, the dynamics of a synaptic connection
1s characterized by the three parameters U, € [0, 1], D;>0,
F;>0. For the numerical results presented in this paper we
consider a discrete time (t = 1,2,...,T) version of the model
defined by Eq. 1. In tlus setting we consider the dynamics
with the initial conditions fi1)=0 (ie., f;(1)=U,)and
d;(1)=1. Note that in this case the time constants F; and
D; have to bex1 (Mehrtash et al., 2003; Kasthuri and
Lichtman, 2004).

it decreases

B,(0) = £,(0).d, (1) @
B0 =50 -0 U - Ry, @)
d,t+D=d, 0+ I_S"'(t) R AGEAG (3)

£, =F,(0).0-U)+ U, “

The input-output behavior of this model synapse
depends on the four synaptic parameters U,, F;, I; and
W, as described, the same input yields markedly different
outputs for different values of these parameters.

The dynamic synapses we have described (Fig. 2) are
ideally suited to process signals with tempeoral structure.

Based on Fig. 2 we can show:
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Fig. 2: Network architecture. The activation function at
the hidden umits was log-sigmoid function and
linear function at the output unit
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Particle swarm optimization: Particle Swarm Optimization
(PSO) was originally designed and introduced by Eberhart
and Kennedy (1995) and Kemnedy and Eberhart (1995,
2001). The PSO 15 a population based search algorithm
based on the simulation of the social behavior of birds,
bees or a school of fishes. This algorithm originally
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intendeds to graphically simulate the graceful and
unpredictable choreography of a bud folk. A vector n
multidimensional search space represents each mdividual
within the swarm. This vector has also one assigned
vector, which determines the next movement of the
particle and is called the velocity vector. The PSO
algorithm also determines how to update the velocity of a
particle. Each particle updates its velocity based on
current velocity and the best position it has explored so
far and based on the global best position explored by
swarm (Engelbrecht, 2005, 2002; Sadri and Suen, 2006).
The PSO process then is iterated a fixed number of times
or until a minimum error based on desired performance
index is achieved. It has been shown that this simple
model can deal with difficult optimization problems
efficiently.

A detailed description of PSO algorithm is presented
in (Eberhart and Kennedy, 1995; Kennedy and Eberhart,
1995, 2001). Here we will give a short description of the
PSSO algorithm proposed by Kennedy and Eberhart.
Assume that our search space 13 d-dimensional and the
1-th particle of the swarm can be represented by a
d-dimensicnal position vector X, = (x', x%,...x%). The
velocity of the particle is dencted by V, = (v!, v%,...v").
Also consider best visited position for the particle is
P = (Pl P%....p"%) and also the best position explored so
far is Py, = (p',, p’s-...p%). So the position of the particle
and its velocity 13 bemng updated using following
equations:

V(4 1) = wov, (0 + 6 (p, (0 - x,(0) + ¢, (p (6 — x,(t) (13)
X+ =x(+v,t+D a4

where, ¢, and ¢, are positive constants and ¢, and ¢, are
two uniformly distributed number between 0 and 1. In this
equation, W 1s the mertia weight, which shows the effect
of previous velocity vector on the new vector. The inertia
weight W plays the role of balancing the global and local
searches and its value may vary during the optimization
process. A large inertia weight encourages a global
search, while a small value pursues a local search. In
(Mahfouf er al, 2004) authors have proposed an
Adaptive Weighted PSO (AWPSO) algorithm in which the
velocity formula of PSO 1s modified as follows:

vit+D=wy () +o.[nip - %N+ 1"2([;)g —x,(t)] (15)

The second term i Eq. 15 can be viewed as an
acceleration term, which depends on the distances
between the current position x; the personal best p; and
the global best p,. The acceleration factor « is defined as
follows:

o= o, +t/N, (16)

where, N, denotes the number of iterations, t represents
the current generation and the suggested range for « is
(0.5, 1). As can be seen from Eq. 16, the acceleration term
will increase as the number of iterations increases, which
will enhance the global search ability at the end of run
and help the algorithm to jump out of the local optimum,
especially m the case of multi-modal problems.
Furthermore, instead of using a linearly decreasing inertia
weight, they used a random number, which was proved
by Zhang and Hu (2003) to improve the performance of
the PSO in some benchmark functions as follows:

w =wytr (1-w,) (17)

where, 18 w, £ (0, 1) a positive constant and r 1s a random
mumber uniformly distributed in (0, 1). The suggested
range for w, 15 (0, 0.5), which makes the weight w
randomly varying between 0 and 1. An upper bound is
placed on the velocity in all dimensions. This limitation
prevents the particle from moving too rapidly from one
region in search space to another. This value 15 usually
initialized as a function of the range of the problem. For
example if the range of all x; 1s (-1, 1) then V,__ is
proportional to 1.

Pues For each particle 1s updated in each iteration
when a better position for the particle or for the whole
swarmn 1s obtained. The feature that drives PSO 1s social
interaction. Individuals (particles) within the swarm learn
from each other and based on the knowledge obtained
then move to become similar to their better previously
obtained position and also to their better neighbors.
Individual within a neighborhood communicate with one
other. Based on the communication of a particle within the
swarm different neighborhood topologies are defined.
One of these topologies which 1s considered here, 1s the
star topology. In this topology each particle can
commumicate with every other mdividual, forming a fully
connected social network. In this case each particle is
attracted toward the best particle (best problem solutiomn)
found by any member of the entire swarm. Each particle
therefore imitates the overall best particle. So, the py,., 18
updated when a new best position within the whole
swarm 1s found.

Learning algorithms for dynamic synapse neural
network model: Here, two learning algorithms for the
traiming of DS model are discussed.

GD based training of DSNN model: A minimizing of the
sum of the square errors 13 used for traimng as the
supervise rule:
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13 2
RMSE = EZ; {y(n) - d(n)) (18)

Here, we describe the basics of the conjugate
gradient learning algorithm- a generalized version of
simple gradient descent-which we used to minimize the
MSE between the network Output y(n) in response
to the input time series x(t) and the target output
is d(n). In order to apply a conjugate gradient
algorithm ones has to calculate the partial derivatives

OEly.d] Flyd] Hlydl - FLydl g a synapses < 1 > in
au, ' o @D

i i ij ij
the network.

We state the equations for all of the partial
derivatives for the network architecture shown in Fig. 2
(1.e., four dimensional network input and one-dimensional
output and a single synapse between a pair of neurons).
The calculations and determining the updates of W, I,
U, and D;, are started from outer layer. For calculating the
partial derivatives €E[y.d] we can show:
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Similar calculations are needed for the optimization of
other synaptic plasticity parameters. But the optimization
rule for the weighted are quite simple and as follows:

.  FE o &y et
SW? e oy nel’ oW —ebo! (24)

To ensure that the parameters 0<U<1, D21, F>1 and
W1 (indices skipped for clarity) stay within their allowed
range we imtroduce the unbounded parameters
U.D,FWeR with the following relationships to the
original parameters: U=1/1+ exp(-U), D =1+ exp(D)
F=1+exp(F) , W=exp(W). The conjugate gradient algorithm
was then used to adjust these wmbounded parameters

which are allowed to have any value in R. The partial
derivatives of E[y,d] with respect to the unbounded
parameters can easily be obtained by applying the chain
rule, e.g.,

JE[y.d] _ 9E[y.d] éU _ &E[y.d]

_ ep) - (25)
au au  au au

“(1+ exp(-UY*

As 1t was shown before, the learning rules for the
parameters of the antecedent part are complex and cannot
be easily calculated. Also, as 1t was mentioned before GD
learning algorithm, suffers from some shortcomings that
are mainly local minima problem, selection of the learning
rate, stability problems and insensitivity to long-term
dependencies.

Hybrid training of DSNN: The hybnd-learmng algorithm
proposed here uses Adaptable Weighted Particle Swarm
Optimization (AWPSO) based method to tramn the
parameters of synaptic plasticity (U, F, D) and GD based
methods for tuning the weights. These methods provide
derivative free exploration for solution in input space. In
addition using hybrid algorithms less local minimum
solutions may be obtained.

The components of each particle m PSO population
are (U, F;, D;) parameters. The update rules of each
population are as Eq. 14-17, which 1s the update rule for
AWPSQ. In this algorithm in each step the PSO will
update the U, I',, D, parameters between all layers and
then the GD optimizer will run once to update the weights
parameters using train data and the update rule for the
weights parameters. After update of the parameters of
both W, and U, F,, D, cne epoch has completely
performed and mean squared error of the train data 1s
calculated. This value would be the cost function of each
particle which must be minimized. For a better exploration
of the search space a mutation operator 1s defined. The
previous vector of velocity in this way is reset to a
random vector if for some iteration the global best value
doesn’t change.

RESULTS AND DISCUSSION

The simulations are presented here to compare the
hybrid learmning algorithm and the gradient descent
learning algorithm. The simulations include time series
prediction and 1dentification of interval traffic rate router.

One hundred epochs for each algorithm was chosen
and the best epoch for them was chosen within 500 epoch
of run of algorithms. The best epoch chosen here, is the
epoch after which the error for test data becomes larger.
In addition to have a better comparison both algorithms
run for 10 times.
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Table 1: Comparing methods for prediction of interval traffic rate router
Dynarnic synapse neural network

GD learning parameters

Traffic rate Hybrid
prediction W.UF,D wW.u training
NMSE (®9)  Training 60.05090 51.06230 8.44880
Testing 77.68730 71.96350 11.69580
Fitness (%)  Training 39.94910 48.93770 91.55120
Testing 22.31270 28.03650 88.30420
RMSE Training 0.16234 0.13804 0.94775
Testing 0.10387 0.09622 0.03273
MAE Training 0.11403 0.09883 0.69888
Testing 0.09139 0.08380 0.01503
MBE Training 0.00051 -0.01823 -0.34830
Testing -0.07710 -0.06940 -0.00080

As 1t can be seen the hybrid algorithm returns much
better results in terms of generalization in testing and
training (Table 1). In addition the results obtained by
hybrid training algorithm are very near together. This
result shows that independent of the 1mtial population the
results of hybrid algorithm will always converge to almost
same point and the results are much more reliable than the
GD algorithm. Also as it is shown the results obtained by
hybrid learming algorithm proposed here are better.

The results of using GD learning algorithm: In Fig. 3, we
use four-dimensional network input, one-dimensional
network output and two ludden layers with towel neurons
in first layer and six neurons in second layer. With this
structure the network has 504 learning parameters. The
standard deviation of Fitness of GD learning algorithm for
test data 1s 22.3127%.

We compared network performance when different
parameter subsets were optimized using the conjugate
gradient algorithim, while the other parameters were held
fixed. Tn all experiments, the fixed parameters were chosen
to ensure heterogeneity m pre-synaptic dynamics. To
achieve better performance one has to change at least two
different types of parameters such as {W, U} or {W, D}
(all other pawrs yield worse performance) (Fig. 4). The
standard deviation of Fitness of GD learning algorithm for
test data 13 28.0365%. The results of changing {W, U} are
as follows:

The results of using hybrid learning algorithm: To
unprove exploration ability of the PSO small value for
maximum velocity is selected This value in all of
experiments 18 0.2. Also the values of w; 15 0.5 and the
value of «; is 1. The population size of the PSO for all of
the experiments i1s 20. In sunulations we use two-
dimensional network input, one-dimensional network
output and one hidden layer with towel neurons. With
this structure the network has 144 learning parameters. In
Fig. 5 the standard deviation of Fitness of hybrid leaming
algorithm for test data is 88.3042%.
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Fig. 3: One step ahead prediction of traffic rate time series
with all of the learning parameters (W, I;, U, D)
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Fig. 4: One step ahead prediction of traffic rate tune series
with two learning parameters (W, U;)

Know the results are presented here to compare the
hybrid learmning algorithm and the gradient descent
learning algorithm. For evaluating and comparing two
different modeling and prediction methods which have
been examined, five criteria are considered.

+  Root Mean Squared Errors (RMSE)

*  Normalized Mean Squared Errors (NMSE)
+  Mean Absolute Error (MAE)

+  Mean Bias Error (MBE)

¢ Fitness (100-NMSE)
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Fig. 5: One step ahead prediction of traffic rate by DSNN
(two dimensional network input, one-dimensional
network output and one hidden layer with towel
neurons)

The criteria are defined as:

RMSE = %i (Rei) - x (i)’ (26)

where, x 1s the measured and x is the Predicted value.

[1=

k(D) — x(D)”

NMSE = 27)

(x(i) - (D)

[1=

where, the value of x 1s the mean of the measured data.

MAE = %i 60 - x(@)] (28)
MBE = %i (1) — x(i0) (29)
CONCLUSION

In this study, a hybrid learning algorithm for DSNN
model has been introduced. The hybnd method
introduced, uses AWPSO for the training of the
parameters of synapses and the GD algorithm to optimize
the weighted parameters of the DSNN. This method was
compared with GD learning algorithm which uses GD

algorithm to optimize both the parameters of synapses
and weights. The GD algorithm suffers from some
shortcomings which are mainly stability problems,
complexity of learning algorithm, sensitivity to mitial
conditions of the values, local minima problems and the
problem of overtraming to the train data. As it was shown
before usmng the hybrid algorithm different mitial
conditions for parameters will converge to almost the
same pomt and less local minima problem may oceur. Also
generalization results were quite better and less stability
problems may happen. The sinulation results support
these complain. Tn addition, by using hybrid learning
algorithm, the leaming rules of the parameters simple.
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