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Abstract: This study presents the development of an alternative statistical analysis method called Integrated
Kurtosis-based Algorithm for Z-filter (I-kaz). The I-kaz analysis was developed in order to measure the degree
of data scattering with respect to the data centroid for a dynamic signal analysis. The I-kaz parameter of a
particular signal was determined by the value of I-kaz coefficient. The algorithm of I-kaz analysis provides a
three dimensional graphic display of the magmitude distribution, which each axis represents the data
distribution of the signal at three different frequency ranges. The I-kaz method which is a graphic-based
technique is a proactive signal analysis tools because the relevant information can be extracted and the T-kaz
space of scattering can be directly mterpreted. The reliability of the I-kaz method has been evaluated by
observing the I-kaz coefficient for a multivariate signal analysis and the trend of the coefficient values were

compared to the existing statistical parameters, which are the standard deviation, varnance, kurtosis and root
mean square (rms). Finally, the applicability of the T-kaz method was accordingly verified.
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DEVELOPMENT OF STATISTICAL
SIGNAL ANALYSIS

Statistics 13 a mathematical science pertaining to the
collection, analysis, interpretation or explanation and
presentation of data. Statistical methods are applied in a
wide variety of occupations and help people to identify,
study and solve many complex problems. In the
engineering applications, these methods enable decision
makers to make informed and better decisions about
uncertain situations. The statistical methed plays a very
important role in data analysis. The statistical data
analysis focuses on the interpretation of the output to
make inferences and predictions. Effective tools serve in
two capacities: to summarize the data and to assist in
interpretation.

The objectives of mterpretive aids are to reveal the
data at several levels of detail (Chatfield and Collins,
1980). A database may view as a domain that requires
probes and tools to extract relevant information. As in the
measurement process itself, appropriate mstruments of
reasoning must be applied to the data interpretation task.
Statistical methods which summarise or describe a
collection of data either numerically or graphically is
called descriptive statistics while the inferential statistics
model the pattern in the data in a way that accounts for
randomness and uncertainty in the observations. The
pattemn recogmtion is important to draw mferences about

the process or population being studied. Pattern
recognition aims to classify data based on either a prior
knowledge or on statistical information extracted from the
patterns (Hand ef af., 2001; Thurasingham, 1998;
Westphal and Blaxton, 1998).

Global signal statistics are frequently used to classify
random signals. The most commonly used statistical
parameters are the mean value, the standard deviation
value, the root mean square (rms) value, the skewness and
the kurtosis (Abdullah, 2005). For a signal with n-number
of data points, the standard deviation value s, is given by:

1

[lz( _p,)zf (1)

where, x, 18 the value of data point and p 1s the mean of
the data. The standard deviation value measures the
spread of the data about the mean value. The square of
the standard deviation value gives the variance, 0 as in
Eq. 2.

o=5’ (2)

The r-th order of moment, M for the discrete signal in
the frequency band can be written as:

r-th order of moment, M, = li (% -p) (3)

i=1
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where, n 18 the number of data and r is the order of
moment. The root mean square (rms) value, which is the
2nd order of moment, 15 used to quantify the overall
energy content of the signal. For discrete data sets the
rms value is defined as in Eq. 4.

rms. = lixf 4

i=1

Kurtosis K, which is the signal 4th statistical moment, is
a global signal statistic which is highly sensitive to the
spikiness of the data. For discrete data sets the kurtosis
value is defined as in Eq. 5.

1

K=
no!

S (5)

For a Gaussian distribution the kurtosis value is
approximately 3.0. Higher kurtosis values indicate the
presence of more extreme values than should be found in
a Gaussian distribution. Kurtosis 1s used m engineering
for detection of fault symptoms because of its sensitivity
to high amplitude events (Abdullah, 2005).

Various ways of analysing the statistical properties
of signals have been applied, but in condition monitoring
application it is prior to the flexibility of the chosen
method. Signal classifying on the basis of mean and
variance was not compatible because the real-life signals
often contain outliers that can bring a noticeable
shift in the actual value of both mean and variance
(Pontuale et ai., 2003). The statistical features described
above reflect the pattern characteristic of the time domain
signal that only contains the typical frequency band
(He et al., 2007). However, these features are insufficient
as the machine signals usually indicate non-stationary.
Research has shown that some typical frequency bands
could reflect the development of faults when analyzing
the behavior of measured signals (Zhu et al, 2005).
Therefore, the spectral distribution in frequency domain
of the machine signals can also reflect the symptoms that
are sensitive to fault seventy (He et al., 2007). Such health
monitoring is often complex, intricate and a highly
demanding task. Thus, the modeling technique should
posses certain required qualittes such as adaptive,
accurate, lucid and generalized, flexible, has noise tolerant
and extrapolative to be applicable in monitoring
applications (Kothamasu et al., 2005).

In view of thus, it 18 useful to develop an alternative
statistical approach as a supplement to the existing
statistical method. This study presents an alternative
statistical analysis method called Integrated lurtosis-
based algorithm for Z-filter (I-kaz) techmque and its

viability in forming an effective condition monitoring
system. Both descriptive and inferential statistics were
utilised in the I-kaz method. The numerical descriptor of
the I-kaz method 1s the I-kaz coefficient, £~ and the value
of the coefficient is synchronized by the three
dimensional graphical summarizations of frequency
distribution. The I-kaz display 1s used to model pattemns
in the data, accounting for randomness and drawing
inferences about the larger population, which is classified
as the inferential statistics. These inferences are very
useful for estimation and forecasting of future
observations.

The I-kaz method can be used to identify key
variables or groups of variables that control the system
under study. The resulting graphical representation
permits the dimension reduction so that sigmificant
relationships among observations or samples can be
identified. A common goal for a statistical research project
15 to investigate causality and i particular to draw a
conclusion on the effect of changes m the values of
predictors or independent variables on response or
dependent variables. This can be achieved by applying
the [-kaz method.

When a function 18 evaluated by numerical
procedures, it 1s always necessary to sample the function
in some marmer, because digital computers cannot deal
with analogue, continuous functions except by sampling
the signal. Examples of where sampled time domain data
is used in engineering include simple and complex
vibration analysis of machinery, as well as measurements
of other variables such as boiler pressures, temperatures,
flow rates and turbine speeds and many other machine
parameters. It 1s also used in areas where computers and
microcontrollers are used to automate processes and react
to input data from the processes.

If the signal has significant varation, then the
sampling peried must be small enough to provide an
accurate approximation of the signal. Sigmficant signal
variation usually implies that high frequency components
are present in the signal. Tt could therefore be inferred that
the higher the frequency of the components present in the
signal, the higher the sampling rate should be. If the
sampling rate is not high enough to sample the signal
correctly then a phenomenon called aliasing occurs.

The term aliasing refers to the distortion that occurs
when a continuous time signal has frequencies larger than
half of the sampling rate (Figliola and Beasley, 2000). The
process of aliasing describes the phenomenon in which
compoenents of the signal at ligh frequencies are mistaken
for components at lower frequencies. In statistics, signal
processing, computer graphics and related disciplines,
aliasing refers to an effect that causes different
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continuous sighals to become indistinguishable when
sampled. Tt also refers to the distortion or artifact, which
results when a signal 1s sampled and reconstructed as an
alias of the original signal. The Nyquist Sampling
Theorem states that to avoid aliasing occurring in the
sampling of a signal the sampling rate should be greater
than or equal to twice the lughest frequency present in
the signal. This 1s referred to the Nyqust sampling rate.
The next sections explain on the development of the T-kaz
method by considering the aliasing effect.

DEVELOPMENT OF THE INTEGRATED KURTOSIS-
BASED ALGORITHM FOR Z-FILTER (I-KAZ)

Typical application areas for dynamic models are
control, prediction, planming, fault detection and
diagnosis. The aim is a better understanding by
visualization in 3 dimensional spaces and to generalize the
ideas for higher dimensions. Thus, the I-kaz method was
developed based on the concept of data scattering about
its centroid. The sampling frequency of the raw signal is
using 2.56 Nyquist number. The number was selected
because most researchers m signal processing are
comfortable with the number. Thus, to avoid aliasing
effect, the maximum frequency span will be as follows:

_ B (6)
" 256

Consider a dynamic signal as illustrated 1 Fig. 1. The
time domain signal is decomposes mto three frequency
ranges, which are:

¢ x-axis: Low frequency (LF) range of 0-0.25 £,
¢ y-axis: High frequency (HF) range of 0.25f _-0.51
¢ z-axis: Very high frequency (VF) range of 0.5 £,

The selection of the 0.25 f__ and the 0.5 £ _ as the
low and high frequency limit respectively were done by
considering the 2nd order of the Daubechies concept in
signal decomposition process (Daubechies, 1992).

Based on kurtosis, the I-kaz method provides a three
dimensional graphical representation of the measured
signal frequency distribution. Tn order to measure the
scattering of a data distribution, variance ¢ for each
frequency band which are ¢,*, 0,/ and ¢, is calculated as
m Eq. 7. The variance obtains the average magnitude
deviation of the instantaneous points with respect to the
mean value as illustrated in Fig. 2.
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Fig. 1. The decomposition process of a signal mn I-kaz
procedure

Fig. 2. An example of low frequency signal showing
mstantaneous points for [-kaz calculation

Since the T-kaz method was developed based on the
concept of data scattering about its centroid, the I-kaz
coefficient, £ can be written as in Eq. 8.

i=] - + i=] - + i=1 -
n n n

N Ji(x:—w Stom) Xem) @®

where, x;, v, z are the value of discrete data in LF, HF and
VF range, respectively at the i-sample of time, p,py, and .,
are mean of each frequency band and N is the number of
data. The I-kaz coefficient, £~ can be simplified in terms of
variance, ¢ as n Eq. 9.

I-kaz coefficient, 2, = (ci )2 + (Ui )2 + (03 )2 ©)
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From the Eq. 5, the 4th moment can then be derived
based on the kurtosis, K and standard deviation, s
parameters such as in Eq. 10.

Ks' = Zn: (x1 - §)4 (10)

i=1
Ks'=M, xn

where, M, 1s the 4-th order of moment, K 1s the kurtosis,
s 1s the standard deviation and n is the number of data.
The I-kaz coefficient can be derived in terms of 4th order
of moment, M, as shownin Eq. 11.

i=l i=1 i=1

.
z\/ML

where, n is the number of data and My, MY andM; are
the 4th order moment of signal in LF, HF and VF range
respectively. From the Eq. 10 and 11, the [-kaz coefficient
can then be written in terms of kurtosis, K and standard
deviation, s as in Eq. 12:

Ji(XF“L)d I CY i(x )’
ZF =

n’ n’

I(Mv) (11)

Z _VKLSL Ky SH va?f
n n

Z = l\/KLSL +Ksh + K8 (12)
n

where, n is the number of data, K, K, K- are the kurtosis
of signal in LF, HF and VF range and s,, sy and s, are the
standard deviation of signal in LF, HF and VF range,
respectively. The I-kaz algorithm was summarized as
presented in Fig. 3.

""" Data collection _—"
v
[ Decomposition of data into 3 frequency bands|
I

v v v
[LF range: 0-0.25,,| | HF range: 0.25f,-0.5€,, | | HF range: 0.5€,,-f...|
v 2 ¥

[ Caloulation of o, | | Caleulation of ,? | [ Caloulation of o |
L 1

[ Caleulation of I-kaz coefficient, Z” |
¥
/—D graphical representation ot/
I-kaz and I-kaz coefficient

Fig. 3: Flowchart of the [-kaz method

RESULTS OF I-KAZ SIMULATION

Case study I: Signal with different amplitude at a
constant frequency: Two test signals, named as Al and
A2 (Fig. 4) were defined with 512 data pomts and sampled
at 1000 Hz. Both signals Al and A2 were consist of a
combination of 50 Hz and 170 Hz sinusoidal and it was
intentionally defined to be different m the amplitude of 0.1
and 0.5, respectively. The logic of creating the A1 and A2
with the different amplitude while keeping the frequency
constant (Fig. 5) were to observe the effect of amplitude

1.0d@® Time domain of signal Al
E-ns
1.0
1] ¥ L T T L] L L] L T L
0 50 100 150 200 250 300 350 400 450 500
Time (sec)
Time domain of signal A2
1.0
g 05
Z o0
2 .05
1.0
0 50 100 150 200 250 300 350 400 450 500

Time (sec)

Fig. 4: The time domain representation of test signals: (a)
Al, (b) A2

30w Frequency domain of signal Al

=

200 400 600
Frequency (Hz)
1509wy Frequency domain of gignal A2
=100+
8
i
E so-

=

200 400 600
Frequency (Hz)

Fig. 5. The frequency domamn representation of test
signals: (a) Al, (b) A2
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Tak 1: Sttistica pararmeter forsigral 41 and 42

Statisfical parametey  Simnal A1 Sizmal A2 Deviaticn (%)
Lhazeceffrient(F)  1.78ELS 424E04 958
Standard deviation(s)  (0.1001 05005 200
Variance (0] 0.0100 02305 960
Eourbosis (K 22408 22406 0.0
s 01000 05000 0.0

changes on the [z representation synchronising with
the I-lzaz coefficient.

aingFy. 5, the masimm frequency span, £, of the
test sigral is 3906 Hz while the low and high frequency
lirrdt for the signal are 977 Hz(0.25 £, and 1953 Hz
(0.5 £, respectively. Therefore, the frequency mange of
gach axis of the [-laz representation was sunumarized as

foll owrs:

o x-amis 0-97 7 Hez-low frequency (LF) mnge
o yeamis 97.7-1953 Hz-high frequency (HE) range
o z-adEs 195.3-3906 Hz-wery high frequency (WE) range

The characteristic of each signal was determined by
statistical analysiz ie standard deviation, warance,
kartosis, rmsand I-kaw coefficient. Using the Eq. 1-2,4-5
and & the statistical analysiz resultz for both test signal
are shownin Tahle 1.

The value of I-laz coefficient for Al sigral (1.78E-05)
islower than the A2 signal (4. 24F -4y asthe Al signal was
consigt of lower amplitude signal compared to the A2
signal. This trend of the result was parallel with the trend
of results obtained by using standard dewviation, variance
and rims Newvertheless, the & which has 95 8% deviation
was mare efficient compared to the standard deviation
and rms, which both parameters hawe 80% deviation. In
contrast, the value of loutosis for A1 was equal to the A2
signal because even both signal obwiously have the
different amplitude, the trend of signal’ = mamitude with
respect to its mean was sitnilar for both sigrals. Since the
loartosis method was unable to show the differences
between A1 and A7 signals, thus it was unableto beasa
tool to detect the ammplitude changes.

The [-kaz representation for Al and A2 signal was
shown in Fig 6. In spite of using standard dewiation,
vatianice and mms method, the [-kaz method provides a
better illustration in characterising a signal since it
genierates a 3-D graphical representation besides of it
munerical indicator, I-kaz coefficient 27 The higher walue
of &" refers to the bigger space of scattering of the [-kaz
representation.

Case study II: Signal with different frequency at a
constant anplitude: In order to observed the ability of
[daz method in cassifying aignals, which have
differences in fequency, two test signalsramed as Bl

Fig é: The [-kaz representation of test signals: (a) A1, (b

&2
Ties dorvsin of sigasl B1
[+
gu
0.5
¢ S0 100 150 200 250 300 350 400 430 100
“Time {ec)
08 b Thme donadn of sipnal B2
gumwwewmwwm
_M.

50 100 150 200 250 200 350 400 430 S0
Thens (see)

Fig 7: (a) The titme dormain representation of test signals:
mbl,(B2

and B2 (Fig 7) were defined with 512 data points and
satnpled at 1000 Hz Signal Bl was consist of a
cotmbination of 30 and 170 Hz sinusoidal wiale the signal
B2 was consist of 250 and 400 Hz of frequency
cotmhination (Fig. &) Theamplitude of the B2 signal was
purposely defined to be equal to the amplitude of Bl
signal. The characteristic of each signal was accordingly
determiined by the prewious procedure of statistical
analysis for amplitude-based signal (casze study T by
using the Eq. 1-2, 4-5 and 8 Table 2 reprezents the
statistical parammeters obtained for both Bl and B2 signals.

since the sampling fequency was 1000 Hz, using
Eq. 5, the maximum fequency span, £, ofthe test signal
iz 3904 Hz while the low and high frequency limmit
forthe sigred are 977 Hz (0,25 £ and 195 3 Hz (0.5 L.,
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gy Farxmump themain e el BIL
]
,
‘TJL = o o
Proquossy (Hej
“g Froewmor dausl of rigm! 12
g*
,
K Il-mmm w

Fiz. 8: [a) The fiequency domain representation of test
signals: (a) B1, (b1 B2

Tahle 2:§ tistical #1fi1simmlE] and B2
sl memekr  SizmlEl G imml F D viation (Fal
Tlazcoeffcem (@) L.72E-0S 2 29E-05 8.7
Snlard deviaton(s) 01001 02000 0
Varawe (o) 00100 a0100 0
Frtss () 2240 13828 i3
ms 01000 02000 01

respactvely. Therefore, the fiequency range of each avis
of [-kaz wpresertation was sanwhansed as follosrs:

v xeawis: B9 T He-loar fiequency (LF) ranze
v yeanis: 3701955 Helugh fequency (HF) mange
v geanis: 1953390 6 Hewrvhighfrequency [V range

The statistical amalysis resalt chbtained for the
frequenoy-based  signal (case shady II1 was
contradiction  with the anplinde-based signal (case
staidy [1, where except for Joartosis | the standard deviabon,
vanance and mns methods wsulting the sinplar vale.
Meararhile, the [-kaz coaffimient sHll shoars its ability 1o

Fig. 2:(a) The I-kaz representation of tests1gnals: (a1 B 1,
(b) B2

differerhiate the frequency difference hebareen signals.
The [-kaz coefficient, & obtained for Blwras 229K -05wras
cortpatatively lizher than B1(1.78 E05). The lnzher vahe
of I-kaz coefficient, & explairs that the frequencies of the
B2 siznal (250 ard 400 Hzlwer lngher than the Bl s1znal
(50 and 1" Hz). The & gives 28,74 deviabonarhich has
mised it tobe more efficient compared to the lartosis that
oy gives B3% dewiaton. In addihon, the I-kaz
coefficiert wvabie was suppored by the I-las
wprsertaton (Fig. 9, where the hugher valne of'the [-laz
coefficient was ilhistrated by the higger space of
scattering of the [-kaz display.

COMNCLUSTON

This stady discussed on the developmert of an
alternative statistical analysis method, lmoan  as
miegiated bartosis-based alzosathmm, I-kaz. The I-kaz
method was adaptive in general and detects verr well any
charges of the measured signal. Unlike the exstng
statistcal analysis, standad deviabom, vanawce and
Jartosis, I-kaz method was capsble to 1mdicate both
amplitide and fiequency difference by simulanecnsly
obtaiming the Ikaz representatiom and the I-kaz
coafficient, & .

For the first case study, the & chtained was fom
17RE-05 1o 4. A E04 for the signalwith anincreased m the
amplilmde vahe. It conld therefore be intered that the
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higher the amplitude present in the signal, the higher
value of the I-kaz coefficient will be obtamed The
condition of this increasing amplitude
simultaneously monitored using the I-kaz representation.
By observing the space of scattering of the frequency
distribution, the bigger space of scattering
that the amplitude of the signal 15 comparatively going
higher.

In addition, for the second case study the &~
obtained for the signal with an increased in frequency
value was from 1.78E-05 to 2.29E-05. To conclude, the
higher value of the £~ indicates the higher frequency of
signal. Again, the condition of the increasing n frequency

can be

llustrates

can be simultaneously momtored using the I-kaz
representation. By observing the space of scattering for
the frequency distribution, the bigger space of scattering
that the frequency of the signal 1s
comparatively going higher.

For the first case study the analysis using variance
gave 96% of deviation, which was higher compared to
95 8% deviation of the I-kaz method. Nonetheless, the
variance parameter was unable to detect both amplitude
and frequency changes. Thus, the T-kaz method was
reliable especially for monitoring purpose where the
observation on the changes of the signal amplitude and

llustrates

frequency were commonly required.
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