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Abstract: This study considers a two-level supply chamn system consisting of one warehouse and a number

of identical retailers. In this system, we incorporate transportation costs mto mventory replenishment decisions.
The transportation cost contains a fixed cost and a variable cost. We assume that the demand rate at each

retailer is known and the demand is confined to a single item. First, we derive the total cost which is the sum
of the holding and ordering cost at the warehouse and retailers as well as the transportation cost from the
warehouse to retailers. Then, we propose a search algorithm to find the economic order quantities for the

warehouse and retailers which minimize the total cost.
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INTRODUCTION

The goal of most research efforts related to the
supply chain management is to present mechamsms to
reduce operational costs. The most important operational
costs in a supply chain are the inventory cost and the
transportation cost.

In the replemishment process, other than the
mventory cost, the transportation cost 1s a major cost
factor that affects the optimal shipment size.
articles in supply
transportation cost as a part of the ordering cost and
assume 1t 1s independent of the shipment size (Hill, 1997,
Goyal and Nebebe, 2000; Hoque and Goyal, 2000).
Schuster and Bassok (1997), Qu ef al. (1999), Nozick and
Turnguist (2001) and Aghezzaf et al. (2006) studied the
mtegrated inventory-transportation systems. In their
works, the transportation cost is affected by the routing
decisions and does not depend on the shipment size.

In many practical cases, the transportation cost is
affected by the shipment size and vice versa. So, it is
important to determine the economic order quantity which
minimizes the overall logistics costs.

Bregman et al. (1990) proposed a heuristic method for
the control of inventory in a multi-level environment with
transportation cost under deterministic and dynamic
demand and finite horizon. Ganeshan (1999) introduced a
three-level supply chamn consisting of a number of
identical retailers, one central warehouse and a number
of identical suppliers. Tn his model, the objective
function consists of the ordering, the holding and the

Some chain consider the

transportation costs. He considered the transportation
cost as a function of the order quantity but ignored the
capacity of the vehicle. Swenseth and Godfrey (2002)
studied the effect of the transportation cost discounts on
ordering decision when over declaring a shipment is
possible. Huang ez al (2005) considered a two-level
supply chain system with transportation capacity
constramt. They applied the Zero Inventory Ordering
(Z10) policy in which the replenishment 1s made at equally
spaced time intervals and orders are placed only when
inventory levels are zero. Ertogral et al. (2007) considered
a vendor-buyer supply chain model and incorporated the
transportation cost. In thewr study, the transportation 1s
made by one type of vehicle whose cost is a function of
the shipment size; this function has an all-unit-discount
structure. Our model differs from the one proposed by
Ertogral et al. (2007) in the sense that we assume there are
three types of vehicles which are defined as small, medium
and large. Each type has its own fixed cost, variable cost
and the capacity size.

THE MODEL

In this study, we consider a two-level supply chain
consisting of one warehouse and a number of identical
retailers (Fig. 1). We assume that the demand rate at each
retailer is known and the demand is confined to a single
item. Shortage 1s allowed neither at the retailers nor at the
warechouse. The transportation time for an order to armrive
at a retailer from the warehouse is assumed to be
constant. The warehouse orders to an external supplier.
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Table 1: Transportation scheme

Vehicle type Capacity Fixed cost Variable cost
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Fig. 1: A two-level supply chain
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Fig. 2: Variations of transportation cost

The lead time for an order to arrive at the warehouse is
assumed to be constant. We assume that the retailers are
identical 1.e., the parameters related to the retailers such as
the demand rate, the rate of holding cost, the ordering
cost and the transportation time are same for all the
retailers. The objective is to find the economic order
quantities for the warehouse and retailers which mimmize
the total cost. The total cost is the sum of the holding and
ordering costs at the warehouse and retailers as well as
the transportation cost from the warehouse to retailers.
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In this model, we suppose that there are three types
of vehicles and delivery of each order from warehouse to
a retailer is made by a single vehicle without splitting. Tt is
a common transportation scheme in most practical cases.
We define these types as small (3), medium (M) and large
(1.). Each type has its own fixed cost, variable cost and the
capacity size (Table 1).

It 13 assumed that F<F,<F, v>v,>v, q,<q,<q,
F, = F4q(v,-v,) and F; = F+q,(v,-v;). These equations
are supposed to avoid any over declaration. Hence, the
transportation cost varies according to the order quantity
as shown in Fig. 2.

FORMULATION OF THE TOTAL COST

Inthis section, we intend to derive the total cost. The
total cost 13 the sum of the holding and ordering costs at
the warehouse and retailers as well as the transportation
cost from the warehouse to retailers.

The notations used in the formulation are as follows:

Demand rate at a retailer

= Ordering cost for a retailer

Ordering cost for the warehouse

Rate of holding cost at a retailer

= Rate of holding cost at the warehouse
Order quantity at a retailer

Order quantity at the warehouse
Number of retailers

> w0

E]

E]

5 O00FF

We have assumed that the
retailers and the transportation time to the retailers are
constant and shortage is not allowed at the retailers.
Hence, the inventory level at the retailers is a simple EOQ
model.

It is assumed that there is no lot-splitting at the
warehouse. Furthermore, shortage is not allowed at the
warehouse so the order quantity of the warehouse
includes an integer multiple (n) of the order quantity of
each retailer. Since there are m identical retailers therefore
the order quantity of the warehouse 15 Q,, = mnQ,. For
optimal solution the arrival of an order to the warehouse
corresponds to the delivery of an order to each retailer.
Thus, the maximum inventory level at the warehouse 1s
Q,-mQ,.

The total cost is the sum of the holding and ordering
costs at the retailers and the warchouse plus the
transportation cost from the warehouse to retailers. Thus,
the total cost can be written as:

demand rate at the

D,A,  h,@Q,-mQ)

C,Q,.Q00=
Q. 2 (1)
emPA RQ DE 03
Q 2 Q
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To minimize the above cost we must consider the
following constraints:

q(l-l) <Qr = q.t (1 1)
Qe = mnd, (1.2)
nis a positive int and g, = 0 (1.3)

Index i in (1) denotes the vehicle types; 1, 2 and 3,
respectively for S, M and L. D,, 1s the demand rate at the
warehouse which 13 sum of the demand rates at the
retailers, D, = mD,.

Substituting mnQ, for Q, and mD, for D, in (1) then
our mathematical problem can be defined as:

DA, . h,mQ (n-1)

I'le 2 (2)
+m(%+£+%+ D,v), i=123

Min C,(n,Q,)=

Q, 2Q
s.t.
q(l-l) <Qr = q.t (21)
nis a positive int and ¢, = 0 (2.2)

SEARCH ALGORITHM TO FIND THE
OPTIMAL SOLUTION

The total cost function (2) has the piece-wise convex
property for a given value of n. This property 1s originated
by the transportation scheme supposed m the model
(Fig. 3).

Figure 2 shows that the transportation cost has an
incremental discount structure. Hence, for a given value
of n the method of obtaming the optimal value of (), 1s the
same as the one described by Hadley and Whitin (1963)
for incremental quantity discount model.

We develop a search algorithm to obtain the optimal
value of n and Q. As mentioned earlier, we apply the
incremental quantity discount method for a given value of
n. To create our search algorithm we need a lower bound
and an upper bound for n. Since n 1s a positive integer
thus 1 can be a lower bound for n. The following
proposition generates an upper bound for n.

Proposition: The upper bound of n is:

] A (h —h_)

n =
v {mh, (A, +F)

[A.h -0 |
{mh, (A, +E) |

JOthennul

(| 3| represents the largest integer less than or equal to X).

Total
cost

Pl =N

oy

:
i
i
!
9 9
Fig. 3: Total cost for a given value of n

Proof: In the first interval of Q,, the total cost function is:
CTl(“’Q,):%JrM
nQ, 2 3

cm®A B DE

Q 2 Q

If we set the derivatives of Cr with respect to Q, and
nequal to zero we obtain:

0% - [w (4)
mh, (0-1)+h,)
ne- L DA ()
Q. mh,

Substituting Q*, in (3) we have:

Cry(m) = 2D,mC + mA, + mEpih, (0 -1 +h) +Dy, (O)

The value of n which optimizes Cr,(n) 1s obtamned as:

N O %)
mh, (A, +F)

From Eq. 5, it 1s clear that n and Q. have an inverse
relation. The value of Q, obtained from Eq. 4 is a lower
bound on Q,, because there 1s no gain to decrease Q, less
than Q*,. Hence, the n* in Eq. 7 would be an upper bound
onn.

In our search algorithm we need the incremental
quantity discount method. The steps of this method are
as follows (Hadley and Whitin, 1963):

Step 1: Compute Q,, the value of Q, which mimmizes
Crln, Q) fori=1, 2, 3. From Eq. 2 we see that:

Q, - ’2D,(%+ mA, +mkF,) (8)
mch, n-1)+h,)
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Step 2: For those Q; which are q;,, <Q, < ¢ determine
Criln, Qs).

Step 3: The Q, corresponding to the mimmum of those
costs (in step 2) 1s the optimal value of Q..

In summary, the search algorithm to obtain the
optimal values of n and Q, is as follows:

Algorithm:

Step 1:

Setn = IA“’(h‘_h"’) Jif ’A“’(h‘_h"’) =0 thann =1
Ymh, (A, +F) | [ Ymh, (A +F)

Step 2: Forn=1, 2,... n, find the corresponding optimal
value of Q, as follows:

Step 2.1. Compute Q, using Eq. 8.

Step 2.2 For those Q,; which are q;,, <Q; < g
determine Cy(r, Q).

Step 2.3. The Q, corresponding to the mimmum of
those costs (instep 2.2) 1s the optimal value
of Q..

Step 3: Forn=1, 2, ..., n, and the corresponding optimal
value of Q, calculate the total cost.

Step 4: The solution which has the minimum total cost
among the solutions in step 3 is the overall optimal
solution.

NUMERICAL EXAMPLE

To clarify the steps of the search algorithm, we solve
a numerical example. The problem data 1s as follows:

A, = 300€
A, = 25¢€
h, = 2€unit™ year™'
h, = 10€unit™ year™
D, = 1500 unit year™
m = 3
Table 2 gives the relevant data on the transportation.
Solution Algorithm:
Step 1:

u

300% (10— 2)
3x2%{25+10)
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Table 2: Transportation data

Vehicle Capacity Fixed Variable
type (unit) cost (€) cost (Eunit™)
3 100 10 0.30
M 200 20 0.20
L 275 30 0.15
Step 2:
Forn=1:
Step 2.1: Using Eq. 8 Q,, =201.2, Q, = 208.6 and
Q,=2156.
Step 2.2: 200<Q,,< = 275 and C. {1, 2153.6) =
7144.2.
Step 2.3: For n = 1 the optimal value of Q, is
215.6.
Forn=2:
Step 2.1: Using Eq. 8Q,, = 145.8, Q,=154.1 and
QL =162.0.
Step 2.2: 100<Q,< = 200 and C,(2, 154.1) =
6448.0.
Step 2.3: For n = 2 the optimal value of Q, 1s
154.1.
Forn=3:
Step 2.1: Using Eq. 8Q,; =121.0,Q, = 129.6 and
Qn=1376.
Step 2.2: 100<Q,< = 200 and C,(3, 129.6) =
6341.5.
Step 2.3: For n = 3 the optimal value of Q, 1s
129.6.
Step 3:

Forn=1and Q =2156:
Cri(1, 215.6)=7144.2.

Forn=2and Q, =154.1:
Cr(2, 154.1) = 6448.0.

Forn=3and Q,=129.6:
Cr(3,129.6)=6341.5

Step 4:
The optimal solution
Cr(3,129.6) = 6341.5.

sn=23Q =1296 and

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

In this study, we considered a two-level supply
chain system consisting of one warehouse and a number
of identical retailers. Unlike the common practice which
determines the economic order quantity according to
inventory costs only, in this model we incorporated
transportation costs  inte  inventory replenishment
decisions. We derived the total cost which 1s the sum of
the holding and ordering cost at the warchouse and
retailers as well as the transportation cost from the
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warehouse to retailers. The total cost function is
piece-wise convex function. Based on this property,
we proposed a search algorithm to obtain the optimal
solution. We provided a numerical example to show that
one can apply easily the steps of the search algorithm.

For future research one can expand this model by
including the multi-item lot-sizing problem. This model can
be more practical if the number of vehicles 15 a decision
variable.

a

REFERENCES

Aghezzaf, EII, B. Raa and V. Landeghem, 2006.
Modeling inventory routing problems in supply
chains of high consumption products. Eur. J. Operat.
Res., 169: 1048-1063.

Bregman, R.L., L.P. Ritzman and T..J. Krajewski, 1990. A
heuristic for the control of inventory in a multi-
echelon environment with transportation costs and
capacity linitations. J. Operat. Res. Soc., 41: 809-820.

Ertogral, K., M. Darwish and M. Ben-Daya, 2007.
Production and shipment lot sizing in a vendor-
buyer supply chain with transportation cost. Bur. I.
Operat. Res., 176: 1592-1606.

Ganeshan, R., 1999. Managing supply chain inventories:
A multiple retailer, one warehouse, multiple supplier
model. Int. J. Pred. Econ., 59: 341-354.

Goyal, SK. and F. Nebebe, 2000. Determination of
economic  production-shipment  policy for a
single-vendor-single-buyer system. Eur. J. Operat.
Res., 121: 175-178.

167

Hadley, G. and T.M. Whitin, 1963. Analysis of Inventory
Systems. Prentice-Hall, Tnc., Englewood Cliffs, N. T.
RM., 1997. The single-vendor single-buyer
mtegrated production-inventory model with a
generalized policy. Eur. I. Operat. Res., 97: 493-499.
Hoque, M.A. and S.K. Goyal, 2000. An optimal policy for
a single-vendor single-buyer mtegrated production-
mventory system with capacity constramt of the
transport equipment. Tnt. I. Prod. Econ., 65: 305-315.

Huang, H.C., EP. Chew and HK. Goh, 2005. A two-
echelon inventory system with transportation
capacity constraint. Bur. J. Operat. Res., 167: 129-143.

Nozick, LK. and MA. Tumnquist, 2001. Inventory,
transportation, service quality and the location of
distribution centers. Eur. J. Operat. Res,
129: 362-371.

Qu, WW., I H Bookbinder and P. Tyogun, 1999. An
integrated inventory-transportation system with
modified periodic policy for multiple products.
EBur. J. Operat. Res., 115: 254-269.

Schuster, D.B. and Y. Bassok, 1997. Direct shipping and
the dynamic single-depot/multi-retailer inventory
system. Bur. J. Operat. Res., 101: 509-518.

Swenseth, S.R. and MR. Gedfrey, 2002. Incorporating
transportation costs into inventory replenishment
decisions. Int. I. Prod. Econ., 77 (2): 113-130.

Hall,



	JAS.pdf
	Page 1


