——

!

>

b

y — Ui
-

. —

T—

Journal of
Applied Sciences

ISSN 1812-5654

ANSI»nez7
SCience an open access publisher
alert http://ansinet.com

Tournal of Applied Sciences 8 (9): 1726-1731, 2008
ISSN 1812-5654
© 2008 Asian Network for Scientific Information

A Study on Direct Memory Loading of an Operating System Through
Preboot Execution in a Homogenous Computing Environment

'SN. Remesh and *A. Abid
'Intel Technology Sdn. Bhd, Bayan Lepas Free Trade Zone, 11900 Penang, Malaysia
Faculty of Information Technology, Multimedia University,
Jalan Multimedia, 63100 Cyberjaya, Malaysia

Abstract: In this study, the remote boot process of an operating system was looked into to determine how an
optimized solution using the Preboot Execution Environment (PXE) process could be created. This study
focuses on Windows CE remote boot implementation in an embedded homogeneous computing environment.
Instead of a DOS shell environment and a bootloader, this research demonstrates the use of PXE pre-OS
environment to introduce the OS bootloading process, which allows a linear address space Windows CE boot
image to be downloaded directly to the remote client machine system memory by using PXE. In addition, the
use of optimized PXE pre-O8 stage to perform the typical bootloading process and the use of the PXE OS boot
stage to download the linear address space Windows CE boot image 1s shown. The result is a quicker remote
boot solution customized for Windows CE which illustrated how PXE and an operating system could be built

to produce a quicker remote boot boot-up experience.

Key words: Operating system, preboot execution environment, remote boot

INTRODUCTION

Remote boot 13 an alternative solution to booting
system. It enables manageability for wide and dispersed
computing environment, while providing a lower total cost
of ownership. An operating system’s remote boot
solution 1s typically different for the many available OS.
There are many parameters which govern the way that the
08 remote boot is developed including the boot process,
bootloader, OS mmage file format, file system, file /O
access performance and OS foot print. In typical remote
boot solutions, there are also extra steps that are taken to
boot the OS such as acquiring the TP address, booting a
shell environment, loading a network stack, setting up a
shared drive, setting up a ramdisk on the remote client
machine and executing the bootloader process. As these
additional steps enable the remote boot environment
requirements, they also increase the boot up time of the
O8. In a remote boot solution and in term of performance,
the boot up speed is often looked at as the major factor in
a user's experience, where these bootloading environment
requirements are causing a slower performance.

The OS bootloader 15 an important part of the OS
start-up process and its functionality s similar in the
various OS. The main purpose of the bootloader is to
initialize the platform and its environment to prepare the
038 to boot; including the CPU and memory imtialization,

loading the OS to the memory, parsing boot parameter
and booting the OS image on the target device. The
bootloader execution requires the use of a pre-O3S
execution environment or shell environment to perform
this process. In remote boot solutions, boot images are
downloaded to the target machine’s ramdisk in order to
setup a shell enviromment to execute the bootloader.

In a diskless remote beot solution, there 1s no local
boot storage media and therefore, the OS boot image is
downloaded over the network to the target machine
system memory or ramdisk. To enable this, a network
stack would have to be loaded first, to download the boot
image to the system memory. With the shell environment
and also the network stack, access to a server or a shared
drive could be established. The bootloader can then load
the OS to the diskless remote target machine’s system
memory and subsequently boot the OS (Stickelberg and
Clerc, 1999).

Both the shell environment and the loading of the
network stack in a remote boot solution consume time,
which clearly affect the boot up performance. In this
research, the problem of the bootloader's extra phases is
addressed, in a remote boot environment as bootloading
1s an important step in all operating systems. This study
was motivated because the current bootloading
requirement in remote boot solution consists of too many
steps. As a result, a sumplified approach 1s required to

Corresponding Author: S.N. Remesh, Intel Technology Sdn. Bhd, Bayan Lepas Free Trade Zone, 11900 Penang, Malaysia
1726

J. Applied Sci., 8 (9): 1726-1731, 2008

download the OS image to the target machine. This
research introduces the integration of the bootloader with
the remote boot building block, that is, the Preboot
Execution Environment (Tntel Corporation, 1999).

PREBOOT EXECUTION ENVIRONMENT

With the introduction of Wired for Management
(Intel Corporation, 1998) and also BIO'S Boot Specification
(Intel Corporation et af., 1996), which allows the Network
Interface Card (NIC) to be part of the selectable boot
media, they also enabled an exciting world of remote
manageability. This specification permits the NIC to be
used as a boot device; where the NIC executes the
network option ROM codes. In this network boot stage,
the PXE provides the ability to initialize the NIC, loads a
set of network stack and runs a Dynamic Host
Configuration Protocol (DHCP) client process to acquire
an IP address from a DHCP server. Coupled with this, the
PXE also provides the capability of downloading the OS
umages to remote boot target machine through the use of
a PXE Server, typically located on the DHCP server. The
PXE mtroduces the use of the DHCP options (Johnston
and Venaas, 2006) to differentiate DHCP discover packets
of the OS DHCP client process and the PXE client process
in the network boot ROM; for the PXE Server to respond
on top of the DHCP Server. The DHCP Server together
with the PXE Server, through the use of the PXE identifier
in the DHCP options sent by the PXE client, provides the
PXE client with the IP address, boot server information
and the index of the boot menu (Intel Corporation, 1999).

After the selection of the boot menu, the PXE client
discovers the boot server, receives the TFTP/MTEFTP
information and then further downloads the network
bootstrap program. This network bootstrap program
execution will then start the OS bootloader and remote
boot the operating system on the remote client machine.

PXE is an industry standard server client solution
which 15 widely deployed for various managed solutions
including remote installation (Microsoft Corporation,
2007), disaster recovery (3COM Corporation, 2000), virus
scanning (emBoot Corporation, 2000), PC BIOS updates
(Argon Technology, 2001) and also remote booting. The
PXE process (Intel Corporation, 1999) is shown in Fig. 1.
The PXE process follows these specific RFCs, RFC 4578
(Johnston and Venaas, 2006), RFC 2131 (Droms, 1997) and
RFC 2132 (Alexander and Droms, 1997).

BOOTLOADING ENVIRONMENT

In the PXE boot process, the pre-OS environment
downloads the networl bootstrap program to the remote
client ramdisk; at address 0x7C0O0h. The pre-OS
environment then re-hooks the floppy drive’s interrupt
service routine to the remote client ramdisk which
subsequently enables address 0x7C00h to boot the shell
environment. Depending on the type of network
bootstrap program boot image, MS-DOS or Linux shell,
the boot image executes the start-up process of the shell
environment. The network bootstrap program is able to
run a script, create a network stack, establish an access to
a shared drive, create a larger ramdisk and also runs a
bootloader to remote boot an OS.

PXE client PXE server
DHCP discovery at port 67
PXE l—"] contains the PXE client tag 1
client Extended DHCP offer to port 68 DHCF
contains PXE server extensions Eonil=n
’ | | _tags+DHCP options+client IP address
PXE
chient DHCP request to installation server port ». [DHCP
67 contains PXE client and DHCP tags Berver,
| DHCP acknowledge reply to port 63 [/
PXE Y%
client
[Boot service discovery to port 67 contains
PXE client extension+DHCP options
=~
PXE) o Boot service acknowledgs reply to Boot
client client source contains NBP file name SEerver
\ NBP, boot.0, is download request to
. PXE TFTP port 69 or MTFTP port >
Pi client NEP is downloaded to the client server,
NBP image 1 —— =] Loops till end
Once OS image \l NBP request for OS boot image, boot.1 | | s/ Boot of 05 image
is downloaded, | { EXE - . L\ server
it executes client /& 08 image, boot.1 is downloaded]
oS i to client PC

Fig. 1: PXE boot process

1727

J. Applied Sci., 8 (9): 1726-1731, 2008

In an example of a remote boot solution to remote
boot Windows CE, the network bootstrap program remote
boots a DOS shell. Upon the start-up of the DOS shell, the
autoexec.bat executes and loads a TCP stack. The TCP
stack is then used to access a Windows CE NK.BIN boot
image through a network shared drive. Next, the Windows
CE loadeepc bootloader starts loading the Windows CE
boot image to the remote client system memory before
jumping to the start address location of Windows CH and
booting the OS. In this solution, the network bootstrap
program 1s used to load the Window CE boot image data
to the system memory on the remote client machine. The
use of the DOS shell environment and TCP stack allows
the Windows CE bootloader to run and perform the task
of loading the data to the system memory.

THE BOOTLOADER REQUIREMENTS

To load the OS files to the system memory and start
the OS boot process, as a final goal, the different remote
boot phases are analyzed, in this research, to reduce the
number of steps in the remote boot process. The analysis
looks mto the pre-OS environment, DOS shell and also the
O3S boot requirement to understand the final output before
starting the OS5 boot process. The method of
accomplishing this has to be generic. Tt also has to be able
to support a large boot image, configure the bootable
address location and allow boot parameters to be passed,
and initialize the hardware and have access to a large
addressable memory range.

Memory access and size: The bootloader must have
access to a large addressable memory range to download
a large OS 1mage to it. With a large memory access, we can
boot a large operating system and not constrain the OS.
Furthermore, it enables a mimmized/custom OS to fit a
fixed memory size.

Configurable address location: When downloading the
OS boot 1mage, the starting pomt of the address location
has to be able to be configured according to the needs of
the OS boot image.

Passing custom parameters: Allow boot parameters,
which are specific to the platform, to be passed to the
boot 1mage. Some boot images require specific parameters
to be passed in order to enable display resolution, display
comments and R5232 debugging among others.

Reduce boot image processing: If a boot image requires
additional processing, for mstance decompressing the
boot image, the boot time 1s then longer. With a linear O3

boot image, we are able to download the OS image
directly to the target client machine's memory. If an OS
image 1s created with the OS kernel, device drivers,
memory mapping configuration and other files are in the
correct memory location, the boot process is then quicker
and easier.

Jump to start address: After the OS image is downloaded
to the memory, the execution must jump to the starting
address location of the start function or process. This
begins the process of booting the OS. Configurability of
this jump address provides flexibility in the bootloader.

PXE BOOTLOADER

An approach of reducing the number of steps is by
mcorporating the bootloading process mto PXE boot
process. In other words, this is done by incorporating the
objective of the DOS shell and bootloader process mto
the PXE boot process. Nevertheless, since PXE is a
standard process, when incorporating the bootloader
process into PXE, we have to ensure that we maintain
backward compatibility to the existing PXE process.

The PXE process has a few important phases that
should be maintained for the compatibility. The DHCP
process 1s a standard process that acquires the IP address
from the DHCP server. This process of acquiring the boot
menu provides the selectivity of boot image. Discovery of
the boot server allows the target client machine to obtain
the mformation of the boot server on the network domain.

Without impacting any PXE implementation, any
customization can be performed at the pre-OS phase
which 1s the boot.0. During the boot.0 execution phase,
we have access to the whole addressable memory region.
In addition, the PXE networlc APT stack 1s available, which
gives the capability to download the subsequent boot
image, i.e., boot.1. Furthermore, the boot.0 environment
allows some execution where boot parameters can be
passed and finally jumping to the start address location of
the boot 1mage.

The PXE bootloading implementation 1s evaluated
using Windows CE. Windows CE 1s an embedded O3S
used by many commercial appliances. Windows CE
supports many different boot media including remote
boot. There are different methods of remote booting using
Windows CE, ranging from shared drive to a server,
ramdisk and also eboot. Windows CE is used in this
analysis because it has a customizable boot image tool
capability of memory configuration and it is capable of
booting from compressed or linear ROM boot 1mage,
selectable of many different applications. In addition, its

1728

J. Applied Sci., 8 (9): 1726-1731, 2008

bootloader is well-documented (Microsoft Corporation,
2006a, b) and its bootloading process 1s similar to many
operating systems (Plagge, 2004). Windows CE OS
memory layout 1s configured using config. bib, where the
kemel, RAM memory location and other components
selected 1n Platform Builder, should be located. Windows
CE uses DOS loadcepe bootloader to boot a Windows CE
boot image, NK.BIN. Platform Builder is the Windows CE
utility used among others to build the boot image,
customize desktop image and integrate device drivers.

INTEGRATING BOOTLOADING INTO PXE

To remam compatible to PXE, all of the bootloading
steps must be integrated within the pre-OS boot.0
environment. Below are the taken steps:

Loading boot image directly to system memory: In the
boot.0 execution, it contains the fixed address location to
download the boot.1; the linear Windows CE ROM boot
image. The fixed download address of boot.l must be
synchronized with the configbhib memory offset in
Platform Builder. The TFTP/MTFTP will download the
boot.1 linear ROM image to that fixed address location.

Linear boot image: The boot.1 boot inage is a linear ROM
immage and not the compressed NK.BIN Windows CE
image. By using the linear ROM 1mage, the boot.1 file can
be downloaded directly to the system memory mstead of

using loadcepc bootloader in the DOS shell environment;
to decompress the NK.BIN image to the system memory.

Utilizing PXE network stack: The PXE MTFTP/TFTP
network APT 1s used to download the boot.1 linear ROM
image from the PXE boot server to the client’s system
memory. This altemative 1s used instead of loading a DOS
TCP network stack to get access to the shared network
drive.

Figure 2 shows the boot.0 flow using the PXE
bootloader process. The PXE bootloader solution
demonstrates that it 1s able to provide a quicker remote
boot boot-up experience on Windows CE. This improved
performance is due to several factors. The removal of the
need:

» For a shell environment, hence skipping an additional
step

* To load another network stack to download the
boot.1 boot image

* To access a shared network drive location to get the
boot 1mage

* Todecompress the boot.1 1mage as it 1s a linear ROM
mage

Together with the improvement in performance, this
solution also allows the configurability of the address
location to download the boot image. In addition, it
provides a pre-OS environment to run any bootloader
execution, e.g., hardware initialization and passing boot
parameters.

Start of boot.0 Start of boot.] exccution
Validate and display Gets PXE signature, PXE version,
PXE version PXE structure length, checksum
Get bott.1 file name From the DHCP discover and DHCP
and file size Ack cache packet, get boot.1 filename, file size
” From the boot.1 file size, available memory is
Setup i ¢ determined and boot.] address dowmload location is setup
Setup TFTP information From the cache package information, it gets
MTFTP server TP, subnet, gateway TP; to sctup TFTP/MTFTP
Download beot.1 to TFTP/MTFTP downloads the boot.1 file
defined address to the fixed address location target client machine
Pass boot parameter Executes the remaining boot loader process; passing
to address location boot parameter to a fixed address location as in config, bib
Jump to start address Jumnp to start Window CE address location

Fig. 2: Flow diagram of the bootloading mtegrated in the PXE boot.0 execution

1729

J. Applied Sci., 8 (9): 1726-1731, 2008

Table 1: Bench marking results comparing PXE bootloader
Network PXE
shared drive Bootloader

Target client machine boot

phase (from the power-up time) (sec) (sec)
Start-up to completion of PXE DHCP process 13.0 13.0
To the display of the Boot Server boot list 14.0 14.0
To start of Boot.0 25.0 25.0
To the complete download of Boot.1 25.5 29.0
To start of DOS shell environment 26.2 NA
To start of loading TCP network stack 26.6 NA
To start of loadcepc to load Windows CE image 35.0 NA
To the jump to Windows CE start boot address 40.5 31.2
Windows CE booted 42.3 33.5
BENCHMARKING

For benchmarking, the PXE bootloader solution is
compared with the Windows CE remote boot. Here the
boot-up performance of a DOS shared drive Windows CE
loadeepe solution and the performance of PXE bootloader
solution are compared. The same Window CE boot image
size of 12.4 MB for an x86 target machine is used. For the
PXE bootloader, the nk.bin image 1s converted to a linear
memory boot image size of 12.6 MB; a slight increase of
the image size due to address padding.

In Table 1, the Network shared drive column shows
the time for a solution where Windows CE is remote
booted through a network shared drive environment from
a server. The shared drive access is created through the
use of the DOS shell using the TCP NDIS stack and
loadcepc bootloader.

To the complete download of Boot.1 (row 4) the time
(29.0 sec) is longer for PXE Bootloader due to the PXE
process of downloading the nknb0 (linear memory
Windows CE boot image) file which 1s 12.6 MB in size. On
the other hand, for the shared drive solution, the nk.bin
(12.4 MB) 1s downloaded in benchmark whle its boot.1 1s
only 1.4 MB.

From the benchmark results, it 15 found that the PXE
bootloader solution reduces the boot- up time by about 9
seconds compared to a Windows CE shared drive remote
boot solution. This 1s about 20% boot-up performance
improvement compared to a shared network drive remote
boot solution. The new PXE bootloader takes about 4 sec
to download the Boot.1 (Windows CE linear boot image)
before jumping to the start address of the Window CE.
During the boot-up, the BIOS took 13 sec while the PXE
DHCP process took 12 sec.

CONCLUSION

This PXE Bootloader solution was able to
demonstrate a faster boot up time for Windows CE. This

was largely because it managed to reduce the number of
steps 1n the remote boot process and it optimized the boot
image type.

The focus of PXE was to create an industry standard
and generic solution for remote manageability and all
customization left for solution providers. As a standard,
PXE 18 needed to demonstrate compatibility, but not
customization across a wide application. Such bootloader
mntegration solutions can be done in the boot.O pre-OS
environment. In remote boot solution, especially in
homogeneous embedded application, the PXE bootloader
solution could be introduced to improve the boot
performance which 1s an important user experience factor.

Future improvement would mclude addmng the
capability of another DHCP or PXE option to be able to
pass the memory address where the boot image is
required to be downloaded. This would avoid the need to
fix the address location and therefore, provide more
flexibility. Secondly, not many OS are capable of
producing linear memory boot image. If a tool is available
to create boot mnages for various operating systems, this
PXE bootloader solution can be used by many different
operating systems. To further reduce the platform boot-up
time, a BIOS vendor might be able to integrate and
optimize the PXE integration into the BIOS however it
might compromise the standard PXE
implementation;, which might be possible in custom

have to
embedded solutions using a homogeneous environment.

REFERENCES

Alexander, S. and R. Droms, 1997. DHCP Options and
BOOTP Vendor Extensions, IETF RFC 2132,

Argon Technology, 2001. Using RIS Menu Editor to
Perform a Remote BIOS Update.

3COM Corporation, 2000. Boot services and disaster
recovery. Technical Paper Disaster Recovery.

Droms, R., 1997. Dynamic Host Configuration Protocol,
IETF RFC 2131,

emBoot Corporation, 2000. Network Boot Tool and Virus
Scanning.

Intel Corporation, Compagq and Phoenix, 1996. BIOS Boot
Specification (BBS) Specification Version 1.01.
Intel Corporation, 1998. Intel Wire for Management

Specification Version 2.0.

Intel Corporation, 1999. Preboot Execution Environment
(PXE) Specification Version 2.1.

Jolmston, M. and S. Venaas, 2006. Dynamic Host
Configuration Protocol (DHCP) Options for the Intel
Preboot eXecution Environment (PXE), [ETF RFC
4578.

1730

J. Applied Sci., 8 (9): 1726-1731, 2008

Microsoft Corporation, 2006a. How to Develop a Boot
Loader for Windows CE: MSDN: Windows
Embedded Developer Center.

Microsoft Corporation, 2006b. Platform Builder for
Microsoft Windows CE 5.0: Boot Loader Design.
MSDN: Windows Embedded Developer Center.

Microsoft Corporation, 2007. Remote Operating System
Installation.

1731

Plagge, M., 2004. Microsoft Windows CE 5.0 Board
Support Package, Boot Loader and Kernel Startup
Sequence; Microsoft Corporation.

Stiickelberg, M. V. and D. Clerc, 1999. Limx Remote-Boot
Mim-HOWTO.

	JAS.pdf
	Page 1

