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Abstract: In this study, the problem of polynomial 3D mterpolation on finite elements is studied and
probabilistic aspects of finite-element approximation on three-dimensional models is presented. The theorems
for new probabilistic properties of basis functions are proved.
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INTRODUCTION

An application of geometrical probability (Kamal
Al-Dawoud and Khomchenko, 2007) for constructing
polynomials basic functions essentially simplifies
problems of approximation i finite-elements method
(Norrie and de Vries, 1978; Oden, 1972). In this paper the
probabilistic aspects of finite-element approximation on
three-dimensional models are presented. Special attention
is given to a simplex (a tetrahedron, 4 units) and multiplex
(a cube, 8 umts). Usually nodal parameters are more
favorably to choose on vertexes of an element, as vertexes
are the general for more number of elements, than units on
edges or lateral sides. Such choice reduces the general
number of central parameters of system elements and
reduces the size of a global matrix of the linear algebraic
equations system (Norrie and de Vries, 1978).

Simplex models (Oden, 1972) are concemed with
using linear polynomials in finite-elements. They were
among the first used in (FEM) in 1956 (Turner, Clough,
Martin and Topp), in 1957 (Synge), in 1962 (Gallagher,
Padlog and Bijlaard). Finite-elements in the form of a cube
have quickly won popularity in three-dimensional
problems, where one cube took the same volume, as 6
tetrahedrons. Let's notice, that irregular splitting of the
area into tetrahedrons is difficult for carrying out even
with the help of a Computer (Strang and Fix, 1973).
Three-linear approximation on a cubic element for the first
time was used i 1963. (Melosh), then 1n 1966 (Key), n
1967 (Zienkiewicz and Cheung), in 1969 (Oden).

Kolmogorov's model of random wanderings on a
three-dimensional grid allows schematizing random
wanderings with random start and absorbing units in
vertexes of a finite-element. Computer experiments give
the basis to assume, that the transitive probabilities have
properties of stability and are mdependent of the form of
the trajectory and the number of steps. The establishment
of the specified properties allows 1gnoring a history of
random wanderings and stimulates searches of the
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simplified single-step scheme, which appreciably
accelerate calculations in Monte Carlo methods. The
economical schemes of random transitions are the result
of minimizing the number of steps. In this study, it is
theoretically proved that the transitive probability
invariant concerning the form of a route depends only on
coordinates of a starting-pomt and vertex of an element
{(firush-point). In the optimum scheme, the particle for one
step on a start-line route reaches vertex of an element.
Interpolations function of three arguments 1s a
mathematical expectation of nodal values. From the
mechanical point of view, transitive probabilities show,
how to distribute a single mass on vertexes of an element,
which barycentric appeared in a reselected point.

FORMULATION AND SOLUTION

On Fig. 1, the three-dimensional simplex-a
tetrahedron with 4 nodes is represented. This element has
equipment with 4 basic functions. In research problems of
scalar fields in each node, there is one degree of freedom
(for example, temperature). Traditional algebraic procedure
of designing polynomial a interpolation is reduced to the
definition of 4 parameters ¢, in a general view polynomial:

P(x, v, 2) = o t0 0Ly, (1)

The
coordinates of nodes 1, (k=14) and nedal temperatures
f, (k=14). For determining ¢; using systems of linear
algebraic equations 4x4, where k-th equation of system 1s
given by:

source 1nformation contains 16 numbers:

o+ X, Fony, oz =1 k=14

(2

The system (2) has the umque solution as its
determinant A is not zero:
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Fig. 1: Tetrahedron (4 nodes)

1 2 ST S

A= 1 X ¥ % — 6V, (3)
1 X3 ¥y 2
1 Xy Yy 2y

Where, V 15 the volume of tetrahedron.

Procedure of designing of a polynomial actually ends
of substitution of parameters ¢; in Eq. 1. However, in most
cases a polynomial (1) can be written mn the form of
Lagrange. For this element m (1) it is necessary to
rearrange so that each element contains a multiplier f,:

4
P(x,y,z)= > N, (x,y,2)-f,, 4
k=1
Where:
Nk(X= Y- Z): %: k= 1>74

The determinant A, produced from a determinant (3)
replacement in k-th row of coordinates of vertex II, by
coordinates of the current point M(x, y, z). Tt is easy to
notice, that basis TLagrange (N will consist of
barycentric coordinates of a three-dimensional simplex,
which have the following properties:

4
0<N, <1, YN, =1 N.(x.y.z)=6,
k=1

Where:
9,, = Kronecker's symbol
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Property (5) represents special interest, as it has a
precise probabilistic sense. To each nodal value of
function f, is matched a corresponding probability N,.
Thus, we can write the law of distribution of probabilities
for the function of a random point M (x, vy, z):

£ | &
N,|N4

Fl & |
n| mN

Now 1t 1s clear that interpolation pelynomials value
(4) inany point of a simplex is determined by the formula
of expectation. Feature of the resulted table, where
selective values are fixed and a random factor is

]

present at the second row. Functions of a random peint
N, (%, ¥, z) are interpreted as transitive probabilities of a
wandering particle, from a random pomt M (%, v, z), to
vertexes of a tetrahedron IT,.

On Fig. 1, arrows are shown the routes of random
transitions. Thus, m a tetrahedron the smngle-step 4-
routing scheme of random transitions with random start
and absorption in vertexes is realized. Tn terms of Monte
Carlo method, formula (4) 1s the average compensation for
an output of particles in vertex. Tt means construction of
interpolation polynomials is reduced to the definition of
transitive probabilities. On a simplex N, are easily defined
geometrically through relations of volumes of two
tetrahedrons with the general side. For example:

Nl(x v z): mes(MH2H3H4)
e mes(TT,TT,TT,TT, )
1l x y =z
7i1 X, ¥V, Z
All X, vy, Z,
I x vy, z

On Fig. 1, the side bound is hatched.

Interpolation on a cube: On Fig. 2, the standard cube with
the sizes 2x2x2 is represented. The origin coordinates
coincides with barycentric cube. Algebraic procedure of
constructing interpolation polynomials begins with the
general expression containing & parameters (by number of
nodes):

P(X, ¥, Z) =0 + X+ oy + 0,7 )

+ OLXY + O, YZ + O XZ + OLXYZ

Coefficients o, (i=18) are defined from the system
of linear equations 8x8 using 32 numbers (coordinate
of vertexes II, and a degree of freedom f,, k= 18)
Now the k-th system equation is given by:
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Fig. 2: Regular hexahedron (cube, 8 nodes)

o+ 0X HOLY 3,7 T O Y+ (7)

oY, 2, +o.x,2, +0.xYy,2 =, k=18

The determinant of system Eq. 7 is not zero, which
provides uniqueness of the solution. Substitution of ¢, in
Eq. 6 and corresponding transformations results in a
polynomial Lagrange form:

P(X, Y. z) => N, (x,y, z) -f,, where

7

i (®)

Nk(x,y,z) (1+ ka)(l-s- yky)(1+ zkz),

Xy, Vi Zy = 1

o0 | —

In the special literature on (FEM) (Norrie and de
Vries, 1978; Strang and Fix, 1973; Oden, 1972), local
coordinates on a standard cube are designated through
E, 1M, ¢ The mean-values of nodes (expectation) in formula
(8) and the law of distribution of probabilities for the
function of a random point M is:

| & |

F f
p| N

N,

e | - |

In multiplex Fig. 2, a single-step 8-routing scheme of

random transitions with random start point M and
absorbing node m vertexes II, 1s realized.

In multiplex transition probabilities are also defined
geometrically. Tt excludes necessity of drawing up and the
resolution of the system of equations 8x&. Firstly, through
the current point M (%, v, z) it is necessary to carry out
three planes, parallel to coordinate planes. Thus the cube
is divided into 8 rectangular parallelepipeds. Now, for
defimng N, it 13 necessary to find relative volume of a
parallelepiped, opposite to node k. For example:
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N(x%@:éﬂfﬂﬂfﬂﬂfﬂ ©)

Other functions N, are defined similarly or from N,
using consecutive transformation of parallel route carried
on 2 units along one of coordinate directions (Fig. 2).
Properties (5) are easy to check up, as in this model.

A lot of interesting properties of posteriori transitive
probabilities n/n are found out in computer experunents
with random wanderings in multiplex on nodes of an
orthogonal spaces grid. Here n-the general number of
particles, starting from control node, n, - (number of the
particles absorbing vertex TI,). In the experiments, the
Kolmogorov's classical model with a 6-routing pattern and
equally probability transitions on each step is used. An
output of a particle on side multiplex wanderings turns
nto  two-dimensional, at an output on an edge-in one-
dimensional and come to an end in one of two vertexes 11,
belonging to the given edge. First of all it 1s necessary to
specify convergence in probability:

n/n—N, at n—e

Experiments have confirmed independence of
transitive probability of the form of a route and number of
steps from start to finish. There are no bases to doubt
about the result of experiments. However we shall try to
prove the following theorem theoretically using
probabilistic representations.

Theorem 1: For a particle, starting from any poeint of M
multiplex, the probability of absorbing vertex II, is
invaniantly concerning the form of a trajectory and also
coincides with corresponding function Ny-three-linear
interpolation.

Proof: OnFig. 2, different routes from a pomt M (x, v, z)
in vertex I, (-1;-1:-1) are demonstrated. Each broken line
consists of three straight-line segments, parallel to
coordinate axes. On any route, the particle for 3 steps
reaches vertex I, On the first step, the particle goes to
one of three edges containing vertex II,, on the second
step, the particle goes to one of two edges contaming
vertex I, on the third step, the particle is absorbed by
vertex II,. For the particles absorbed by other vertexes,
the situation is similar. To prove this theorem, it 13 enough
to consider one of six possible routes from M to II,, for
example:

M- A, —B~1I,

The probability of transiton M—A, 1s defined
geometrically and is:
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p(M—A )=

S0-%)

The probability of transiton M—B, provided, that a
route passes through A, 1s:

P(M—>A, > B,)={1-x)-—{1-y)

| =

Finally, the probability of transition M—1I; through
points A, and B,, is:

p(M > TL)= (1% (1) (1-2)

= $(1=x)(1-y)(1- ).

that comncides with the formula (9).

By changing trajectory from M to II, in the formula
(9) and by changing only the order of factors all 3!
Variants give the same results.

Remarks:

Each side of a cube (Fig. 2) 1s two-dimensional
multiplex with bilinear basis (Kamal Al-Dawoud and
Khomchenko, 2007). Therefore m view of results
(Kamal Al-Dawoud and Khomchenko, 2007) it 1s
possible to offer the two-step-by-step scheme of
wanderings with the same transitive probability (9).
For methods of Monte Carlo: the more shorter a
history of wanderings, the more effective i1s
computing algorithm. This explaned mcreased
mterest in single-step scheme.

Simplicity and content of models Kolmogorov
with orthogonal trajectories allow constructing the
three-dimensional scheme of wanderings as a
superposition of three one-dimensional wanderings.
However, multi-step wanderings on a grid are long-
term and practically useless.

Theorem 2: The probability of transition of a particle from
random start in vertex I, multiplex 1s a harmonic function
both on Laplace test and on Privalov's test.

Proof: The differential test of harmonic function,
suggested by Laplace, 1s:

An (x,y,z)=0
Where:
2 2 2
- 8_2 8_2 +— — Laplace operator
X" Oyt oz
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The integral test of harmonic, suggested by Privalov,
is the mean-value integral by element:

11
g

11
N, (x,y,)dxdyd
“1 ooy 7)dxdydz 10)

=N, (0,0,0)=

OO\»—-

Simple consideration shows, that N, (x, v, z) satisfies
Laplace equation and the rules mean-value. Notice, that in
formula (10) multiplier 1/8 before triple integral is a density
of uniform distribution of a random point in multiplex.
Therefore, Privalov's test gives expectation of function of
a random point. This result has exactly probability
meaning and is formulated as the following theorem.
Theorem 3: Expectation of tramsitive probability
N, (x, v, z) on all random trajectories n multiplex 1s equal
to probability of transition of a particle from barycentric to
vertex.

For proof it 1s enough to refer to formula (10).

Remark: Surprisingly, the function Ny (x, y, z), containing
members of the second and third degree, supposes exact
integration using a simplified approached formula with a
unique node in barycentric of an element.

CONCLUSION

New probability properties of basic functions
Lagrange 3D-interpolation are established. Tt stimulates
attempts  to distribute probability approaches on
polynomials of the higher orders in one-dimensional, two-
dimensional and three-dimensional finite elements. Special
interest is represented with penal routes with negative
transitive probabilities. Such generalization of models of
random wandermgs will need comrect and grounded

formulations.
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