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A Protocol for Digital Signature Based on the Elliptic Curve Discrete Logarithm Problem
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Abstract: Digital signature and cryptography algorithms based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP) have recently received sigmificant attention by researchers due to their high performances.
In this research, a novel protocol for digital signature based on the ECDLP has been presented which in
comparison with the other protocols 1s shown to be more efficient. An acceptable security level of the proposed
protocol similar to other protocols is also verified. The performance and the time complexity of the proposed
protocol in comparison to previous protocols 1s analyzed and some advantages outlined.
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INTRODUCTION

The term digital signature was referred to by Ditfie
and Hellman (1976). Their design intended to present an
algorithm having properties identical to hand written
signature (1.e., sinple to generate and verify but difficult
to forge). Nonetheless, the signature could be generated
automatically by means of a digital machine to be utilized
m digitized documents (Zakerolhossemi and Malekian,
2007).

The most significant difference between the hand
written and digital signatures is the uniqueness of hand
written signatures for all the documents. However, the
digital signatures are dependent on the message and do
change accordingly. Tn general, the mechanisms for
implementation of a digital signature can be categorized
mto four groups as follows (Zakerolhossemi and
Malekian, 2007 ):

*  Digital signatures based on the message digest

+  Symmetrical key digital signatures, established by a
reliable center for signature confirmation

* Digital signatures based on the public key
cryptosystems

¢ Signatures based on transforms that are independent
from cryptosystems

The main focus of this research is to improve the first
group of digital signatures. In this system, each document
15 set mto a standard form and then a short digest
consisting of few bytes is generated. The size of the
document does not influence the size of the digest so the
size of digest 1s constant for all the documents. The digest

will intricately be affected only by changes in contents
and locations of each bit n the document. The digest will
be estimated in such a way that any alteration of the
document will lead to great changes in its digest. After
extracting the digest, the bit-string created will be
encrypted by means of signer’s private key and the result
is appended to the message. In fact, a digital signature is
a numerical string which should be extracted from the
context of a document through a complex procedure and
it will be attached to the document after being encrypted
by the signer’s private key (Zakerolhosseini and
Malekian, 2007).

In order to verify, the receiver must decrypt the
encrypted digest using the signer’s public key and
re-compute the digest of the received message. Then, the
receiver compares the two results and if they are the same,
the document will be accepted; otherwise the document
15 deemed to have changed. Figure 1 shows the general
procedure (Zakerolhosseini and Malekian, 2007):

Estimation of the message digest: To estimate the digest,
the algorithms must satisfy the following conditions
(Zakerolhosseini and Malekian, 2007 ):

¢+  When a message m is available, computing its digest
e must be computationally fast
¢+ If a digest is available, the major context of the

document can not be reproduced (one-way
procedure)

» In practice, make several messages having the same
digest impossible

The public key cryptography: Many of the public key
cryptography methods have been broken, but some of

Corresponding Author: Ali Zakerolhosseim, Faculty of Electrical and Computer Engineering, Shahid Beheshti University,
Velenjak, Tehran, Iran Tel: +989121236539 Fax: +98-21-55404240
1919



J. Applied Sci., 8 (10): 1919-1925, 2008

Signed
document

Decrypt digest using signer’s
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Fig. 1: The procedures for digital signature based on the
message digest

them have remained tenacious (Vanstone, 1997). These
methods are categorized fundamentally into three groups:

*  The Integer Factorization Problem (IFP)

¢ The Discrete Logarithm Problem (DLP)

¢+ The Elliptic Curve Discrete Logarithm Problem
(ECDLP)

Increasing the key length in digital signature
algorithms based on the ECDLP causes an exponential
increase in the security which is the most important
feature of the algorithms in this category. Thus, mn order
to satisfy the security requirements, the Elliptic Curve
Cryptosystems (ECC) need a smaller key size compared to
other algorithms (Vanstone, 1997). This feature of having
a small key size simplifies the calculations significantly
and also reduces the power dissipation (Caelli et al.,
1999). Therefore, the algorithms based on the ECDLP are
receiving much attention i applications such as
comrnunications, sensor networks and wireless devices.
In recent years, the ECC has been widely established
among international standards, for instance, TS0 11770-3,
IEEE P1363, ANSI X9.62 and FIPS 186-2, etc. Atthe end of
this research, the performances of the categories
mentioned earlier are compared.

The elliptic curves over finite fields: Elliptic curves
mtroduced by Miller (1985) and Koblitz (1987) play an
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Fig. 2: Addition on elliptic curves

important role in cryptography (Hwang and Liao, 2005;
Tzeng and Hwang, 2004). Let GF(2™) be a finite field of 2%
elements, where m 1s an integer. An elliptic curve
over GF (2%) is defined as Zheng and Tmai (1998) and
Johnson et al. (2001):

v +xy=x"+ax’+b with a,be GF2™), bzo (U

An elliptic curve over GF(2™) consists of all pomnts
(x,y), where x, y € GF(2™) together with the point of
infinite o, do satisfy (1) earlier. The addition of two points
and doubling a pomt on an elliptic curve in a geometrical
space, are shown in Fig. 2 and 3, respectively.

Considering an elliptic curve C on GF(2%), the
addition of points follows specific rules indicated below
(Johnson et al., 2001, Coombes, 1999; Yuand Chen, 2005):

s 0O+0=0,

» P+ 0O =Pforall values of P = (x, y) € C. Namely, C
has O as its identity element.

» P+Q= 0 for all values of P = (x,y)e Cand
Q = (x, %-y) € C namely the mverse of (x, v) 18 sumply
(x, x-y)

+  Adding two distinct points:

ForallP=(x, v;) e Cand Q = (X, v,) € Cwithx, #x,,
P+ Q = (X, y5) is defined as:

—32 +
Xy =AM+ A+ X +X,+8 \Where A= 2 J1

_ X, +X
Yi = MX + X)X+ Y ¢ !
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2P=(x, ¥

v
Fig. 3: Doubling a point
*  Doubling a point:

Forany P = (x, v € Cwithy, #0, 2P = (x,, ;) i8
defined as:

_ 8
X, =A +A+a where 7L:x1+£

¥, = A, X)X, Y Y1

The scalar multiplication: The scalar multiplication is a
fundamental operation in ECCs. The operation 1s simply
an accumnulation of a pomt P to itself for k times (k 13 anm
bit long scalar) (Johnson et al., 2001):

Q=kP=P+P+..+P
k

The discrete logarithm problem on elliptic curves: Let P
and Q be the two points on an elliptic curve with an order
of n where n is a prime. The point Q = kP where k < n.
Given the points P and Q, estimating the value of k 1s
computationally nfeasible (Smart, 1999).

Previous works: Here, some previous algorithms based
on the ECDLP are briefly investigated. The weakness of
these protocols 18 examined which is the motive behind
designing a new protocol. Generally, there are four
operational phases in digital signatures based on the
ECDLP as listed below:

¢ The system initialization phase
¢ The key generation phase

*  The signature generation phase
*  The signature verification phase

In Table 1, a brief description of two well known
algorithms is presented. In both these algorithms it is
assumed that entity A wishes to sign a message m and
selects a random mteger d,, from the mterval [1, n-1] as the
private key and publishes Q, = d,G as the public key.

InElliptic Curve Digital Signature Algorithm (ECDSA)
{(Johnson et af., 2001), The problem 1s due to resetting "s"
to zero in step 4 of signature generation phase, that leads
to a jump to start of the phase and in turn, re-computing
some costly operations like scalar multiplication, modular
inversion and modular multiplication. This jump to start of
the phase 1s due to s having a value of zero and m that
case the s~ in the verification phase can mnot be
computed. Also as stated in EC El-Gamal Digital Signature
Scheme (Rabah, 2005), resetting "s" to zero leads to
incorrect result in the verification phase. Therefore, in the
algorithms stated in Table 1 if s is set to zero, the
signature generation phase must become recurring.

In order to correct this weakness and also to unprove
the performance of such algorithms, some approaches
such as the method presented in Chung et al. (2007) and
the proposed method, are presented here. A comparison
of these methods 1s also presented here.

THE PROPOSED METHOD

Here, a new and improved protocol based on the
ECDLP 15 proposed. Initially, the structure of the protocol
is described and then, the effectiveness and the security
of the protocol are investigated. This algorithm is divided
1nto four steps similar to other digital signature protocols.

Step 1: System initialization phase

» A field size q = p which defines the underlying finite
field Fq, where either q = p in case that p 1s an odd
prime, or q = 2" that g 1s a prime power

»  Specifying an appropriate elliptic curve by selecting
two parameters a and b of elliptic curve equation E
over Fq: y* +xy =x’ + ax’ + b.

*  The base point G = (;,,q,), is a finite point on elliptic
curve having the largest order n

¢+  The order n of the base point G, is a large prime
number in E(Fq). N = #E(Fq) is divisible by n

Step 2: Key generation phase
Signer "A" generates the public and private keys, as
follows:

»  Select a random integer d from the mterval [1, n-1] as
the private key
»  Compute Q = dG as the public key
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Table 1: The signature generation and verification phases of two known algorithms

Algorithms Signature generation phase Signature verification phase
EC Select arandom integer k from the interval [1, n-1]; Compute V, =sF;
El-Gamal Compute F=kG = (x;, y,), r = x; mod n; it r= 0 then go to step 1; Cormpute Vy = him)G + 10, where r=1x.
(Rabah, 2005) Compute e = him), where h is a hash function ; Accept if and only if V|, =V,
Compute s =k!(e + dur) mod n. If s = 0 then go to step 1. signature is (F, s)
ECDSA Select arandom integer k from the interval [1, n-1]; Compute w=s" mod n;

(Johnson et af., 2001)
Compute e = h{m);

Compute s =k"'(e + dur) mod n. If s = 0 then go to step 1. signature is (r, s)

Compute F=kG = (x;, y,), r = x; mod n; it r= 0 then go to step 1;

Compute 11; = him)w mod n and u; = rw mod n;
Compute u; G + u,Q, = 1, ¥1);

Cormpute v =3 mod n;

Accept the signature if and only if v =r.

Step 3: Signature generation phase
Signer "A" generates a sighature for the message m,
as follows:

¢ Select a random integer k from the interval [1, n-1],
where k # d (d is the private key for signer "A")

* ComputeF =kG = (x,, yy)andr =x;, modn. Ifr =0
then go to step 1

¢+ Convert the message m into an integer e using the
hash-function operation, e = Hash(m)

* Computes = (dre + k) mod n

* (8, F) 1s the signature generated by signer "A" for the
message m

Step 4: Signature verification phase
The verifier confirms the validity and authenticity of
the signature m, as:

+ Compute the digest of received message as ¢ =
Hash(m"),

+ Computev=5 G

+ Computeu=e'r Q+G’

* Ifv =u then validate the signature; otherwise reject

Note: It 13 assumed the message received for the
verification is m* and the received signature is (3", F').
The use of these new symbols indicates that message and
signature may have been altered.

Proof: Assume the message and its signature have
not been altered, ie., F'=F, s =5 ¢ = e Since an
elliptic curve over GF(2") forms an Abelian group
(Lawrence, 2003) under an addition on points, then the
consistency of the scheme will be evaluated by Eq. 2.

v=5'G=sG = (dre + K)G = dreG + kG
=e1r'dG+ kGy=e1(dG)+(F)=1u

(2)

In this protocol, the modular inversion operation in
signature generation and verification phases could be
avoided. Also, compared to other schemes as shown in
Table 1, when "s" in step 4 of the signature generation

phase becomes zero, the verification phase can still be
performed using a signature that it's "s" 1s equal to zero
and thus the signature generation phase does not repeat.

Having s = 0 results in sG = o (point of infinity)
(Rabah, 2005). If this case occurs, then according to
(2), u=v = O (pownt of infimty) and the verification phase
1s also will be performed correctly. This feature increases
the performance of the protocol. The security of this
protocol depends on the difficulty of solving the ECDLP
and the resistances of hash-function against attacks as
well other similar protocols.

Signature generation by means of a reliable method: In
all corresponding protocols, it 1s required to embed and
hide the digest into the signature such that it would be
impossible to detect the digest n the signature. In other
word, digest’s presence in the signature cannot be
tracked or detected. Hence, no one can forge the
signature. In all known similar protocols, this umqueness
is achieved by means of two parameters that are unknown
to everyone except to the owner of the signature. These
parameters are the private key d and the integer k where
k is randomly generated by the signer for each message
and d # k.

In general, if X and Y are some unknown values that
are generated by d and k, then the signature will be
Xe + Y. As an instance, in ECDSA (Johnson ef al., 2001)
and EC EL-Gamal Digital Signature Scheme (Rabah, 2005),
the signature is emploved as (ke + (drk™). However, in
the proposed scheme the signature 1s (dr)e + k which
employs the parameters d, k and r. The effect of
employing r parameter along with the unknown
parameters d and k for generating the signature will be
appeared later.

The impossibility of signature forging: Here, we examine
how forging the signature is not possible in the proposed
protocol. In general, assume a forged signature for the
message m is (s + v = s, F), instead of the original
signature (s, F). We shall prove that no values can be
found for y and F" such that satisfies the Eq. 3 for the
verification.
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(dre+k+y)G=re (dG)+F (3)

Imitially it will be presented that even with selection
of v appropriately and arbitrarily, no value can be found
for F'. From Eq. 3, the relation of Eq. 4 can be emerged. In
this equation, in order to estimate an appropriate value of
I, the attacker has access to all the left side parameters
except the 1 e(dG) value, where 1" is the x-coordinate
of F.

re(dG) - r'e’ (dG) + kG + yG = F )

Hence, since the value of F* is not available, then r*
will be unknown as well. Therefore, the left term of the
Eq. 4 can not be computed. Consequently, calculating an
appropriate value for F* 1s not possible. Another
approach by the attacker may be by means of selecting
the y value appropriately and eliminating the r* from the
left side of the equation. For this approach, the attacker
has to select the y value equal to dr'e’. However, since
the value of d is not available for signature forger, the 1’
can not be eliminated and the appropriate value of F* can
not be generated.

It will be presented at this section that if the value of
F' is chosen appropriately and arbitrarily with no
precondition, it would be impossible to calculate the value
of y alone and therefore rendering the forging impossible.
From Eq. 3 the relation Eq. 5 13 concluded:

yG =1'e (dG) + F — (dre+ k)G (3)

The parameters on the right of Eq. 5 are available to
the forger, in other words, the forger has the value of the
product yG. However, according to ECDLP 1t 1s not
possible to estimate the value of y. Hence, even with an
arbitrary value of F', y value cannot be estimated and
making the forging impossible.

RESULTS AND DISCUSSION

Table 2 defines our notation. From Koblitz et al.
(2000), the time complexity for various operation units in
terms of time complexity of modular multiplication 1s
shown in Table 3.

The time complexity of the proposed protocol and
some other protocols in terms of modular multiplication
operation, modular inverse operation and one-way hash
function is shown in Table 4. The proposed protocol does
not require any inverse computation for the signature
generation phase and the verification phase. Initially,

Table 2: Definition of given notations

Notation Definition
Than Time complexity for the execution
of a modular multiplication
Teer Time complexity for the execution
of a modular exponentiation
Teirp Time complexity for the execution
of a modular addition
Tee na Time complexity for the execution of a
multiplication in an elliptic curve point
Tac_arp Time complexity for the execution of an
addition of two points in an elliptic curve
T Time complexity for the execution of a
meodular inversion
Trasu Time complexity for the execution of a

one-way hash-function operation

Table 3: Unit conversion of various operations in terms of Tyqy.
Time complexity of Time complexity in terms
an operation unit of modular multiplication

Texr 240 Ty
TEC_MLTL 29 Ty

Tee ap 0.12 Ty
Turo Negligible
Trusn Negligible

required computational cost for each protocol has been
estimated by means of adding the execution time of
required operations. Latter based on Table 3, all the
estimated times have been exhibited in terms of the
required execution time for modular multiplication or
1NVersion.

Table 4 shows that the proposed method 1n
comparison to other protocols, has less time complexity
for the signature generation and verification phases.

Since the method developed in Chung et al. (2007),
similar to our method, does not require re-computing
signature when s = 0, a further comparison is essential.
Assuming the time complexity of the hash function 1s
neglected, then we can estimate the speedup of the
proposed protocol in comparison with Chung et af. (2007),
as follows:

Time complexity of the Chung et al's protocol

Speedup =
P P Time complexity of proposed protocol

Hence the speedup of signature generation and
verification phases can be calculated as (6) and (7),
respectively below:

60.12 Ty + Tssn

Speedup = ~ 8012 193 (6)
31'-FMUL + THASH 31’TMUL
87.24T T 87.24T,
Speedup = T TEER MUL 1,47 (7)
59.12T, . + T 59.12T,,

Therefore, in comparison to the method in
Chung et al. (2007), the signature generation and
signature verification phases of our method 1s improved
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Table 4: Required time complexity in unit of Ty

Time complexity Time complexity Mathematical
Various schemes Signature generation phase in Ty, Verification phase in Ty, base T
Liet @l (2005) 2Texpt 6 Tomm+ Tinew + Thiesn 246Tn H Tww T A Teart S Toane+ s 965T e +T ks IFP
Nyang and Song (2000) 2Texr Tt T 481 T Thas 2Tt T haos T Toask 481 T T hasn DLP -
EC ElGamal (Rabah, 2005) 2Ty Tyry+Tee p+ Thses £ SVRING L S T 8712 Ty~ Tevuas ECDLP YES
+THash
ECDSA 2T+ Ty + Tee wur T kaa 3Tt T T 2Thuct T+ 2Tee v 001 2Ty + T T, ECDLP YES
(Johnson ef ., 2001) +Tsc_soot Than
Chung et . (2007) YTy +2Tee ot Tee oo T 6012Tomn+Thns 3T aun Tz aop 87. 24 Ty Totaas ECDLP NO
+THash
Proposed scheme 2Ty 1 Tee pa* Ties 3Ty + T Mgo pHlTee aop 5912 T+ T ECDLP NO
+TMLTL+THash
T: Re-computing signature when s = 0 in step 4 of signature generation phase
by 93 and 47%, respectively. Therefore, it 1s clear that the Hwang, M.S., I1.C. Lin and KJF. Hwang, 2000.

proposed protocol can substantially raise the efficiency
of signature generation and signature verification.

In general, elliptic curve discrete logarithm problem
has a stronger mathematical base than the integer
factorization (Nyang and Song, 2000) and discrete
logarithm problem (Li et af., 2005; Pomtcheval and Stern,
2000; Hwang et al, 2002; Hwang et al., 2001). In some
well known algorithms like RSA (Hwang ef al., 2000), the
key length has to be 1024 bits for achieving high security
(Rivest et al., 1978). The same level of security is achieved
i BECC by a key length of 160 bits. Therefore with the
same level of security, the speed of ECC 1s several tumes
faster than RSA cryptosystems.

CONCLUSION

In this research, the weakness of other protocols
for digital signature based on the ECDLP 15 lighlighted.
A protocol based on the ECDLP is proposed for
overcoming this weakness. The time complexity of the
proposed protocol 18 compared with the previous works
and results indicate the proposed protocol based on the
ECDLP 15 more efficient than algorithms based on the IFP
and DLP. Furthermore, the results also indicate the
protocol has less time complexity even compared to other
family protocols based on the ECDLP.
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