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Abstract: In this study, the triangular membership functions are used for flexible flow-lines with m machine
centers to examine processing-time uncertainties and to make scheduling more suitable for real applications.
A methodology is developed for modeling flexible flow line scheduling with fuzzy processing times, fuzzy due
dates, fuzzy set-up times, fuzzy holding costs and fuzzy shortage costs. A fuzzy scheduling model is presented
and a hybrid algorithm is also designed for its solution. Finally, some numerical examples are developed and
solved to demonstrate the computational efficiency of the proposed algorithm.
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INTRODUCTION

In simple flow-line problems, each machine center has
just one machine. If at least one machine center has more
than one machine, then the problem 15 called a flexible
flow-lme problem (Allaouiand Artiba, 2006). Flexible flow-
lines are thus generalizations of simple flow-lines.
Scheduling jobs in flexible flow-lines is considered an NP-
complete problem (Jamak et af., 2007).

Flexible flow-lme problems have received
considerable aftention from researchers during the last
two decades. However, the scheduling criterion most
frequently considered in those papers was the maximum
completion time (Chang ef al., 2004; Logendran et al,
2005). Furthermore, these studies propose either an exact
algorithms, which can solve only up to moderate size
problem instances, or different types of heuristic and
approximation algorithms (Chang et al., 2004, Kyparisis
and Koulamas, 2001). Botta-Genoulaz (2000) has proposed
six heuristic approaches for minimizing the maximum
tardiness m a scheduling problem with N jobs and M
stages m a flexible flow-line environment with identical
parallel machines and under time lag and due date
constraints. Lin and Tiac (2003) also proposed a near
optimal heuristic approach for mimmizing the maximum
tardiness m a two-stage flexible flow-line scheduling
problem. They applied an integer linear programming
model, a genetic algorithm and a lower bound as
approximate methods respectively. Vob and Witt (2007)
studied a 16 stage real-life scheduling problem in a flexible
flow-line environment with the objective of minimizing the
tardiness. They proposed a limited resource mathematical
model based on this scheduling problem and then solved
1t using a heuristic approach. Liu and Chang (2000} also

have studied a Lagrangean Relaxation approach for
solving a flexible flow-line problem with m stages that
minimize the sum of set-up and preparation times.
Kurz and Askin (2003, 2004) have examined the m-stage
flexible flow-line problem for mimmizing the maximum
makespan considering the sequence-related set-up tumes.
Pugazhendhi et al. (2004) applied heuristic approaches in
m stage flexible flow-line problem to minimize the total
weighted flow-time. Rz ef af. (2006, 2008) and Ruiz and
Maroto (2006) in three articles has used heuristic and
meta-heuristic GA approaches for minimizing the maximum
makespan in m stage flexible flow-line problem.

In the conventional scheduling problem, the
parameters such as job processing times, ready times, due
dates have been assumed to be deterministic (Tin et al.,
2006). However, in the real-world situations, these
parameters are often encountered with uncertainties.
Accordingly, scheduling problems have been mainly
branched into two categories: deterministic scheduling
and uncertain (stochastic, fuzzy, ete.) scheduling. In fact,
various factors mvolved m the scheduling problems are
often imprecise or uncertain in nature when we formulate
scheduling problems in the real-world. This is especially
true when human-made factors are incorporated into the
problems. In these cases, it seems more appropriate to
consider fuzzy processing times, fuzzy due-dates and so
on.

Konno and Tshii (2000) discussed an open line
scheduling problem with fuzzy allowable time and fuzzy
resource constraint. Litoiun and Tadei (2001) presented
some new models for real-time task scheduling with fuzzy
deadlines and processing times.

There are three main approaches reported m the
literature for the fuzzy scheduling problems: fuzzifying
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directly the classical dispatching rules (Ozelkan and
Ducksten, 1999), using fuzzy ranking (McCahon and Lee,
1990) and fuzzy dominance relation methods (Asano and
Ohta, 1996) and solving mathematical programming
models to determine the optimal schedules by heuristic
approximation methods (Hapke and Slowinski, 1996)
mcluding Genetic Algorithm (GA) (Sakawa and Kubota,
2000), simulated annealing (Kolonkoe, 1999), tabu search
(Armentano and Ronconi, 1999), etc.

A limited amount of literature has been devoted to
Fuzzy Flexible Flow-Line Scheduling Problems (FFFLPs).
In this paper, as a practical application, we focus on the
FFFLPs with fuzzy processing times, fuzzy due dates,
fuzzy set-up tumes, fuzzy holding costs and fuzzy shortage
costs. Tniangular fuzzy numbers that can be used to
present the natural pessimistic, moderate and optimistic
estimates of uncertain execution times are used to
represent fuzzy task values. We use triangular
membership functions for flexible flow-lnes with m
machine centers to examine processing-time uncertainties
and to make scheduling more
applications. Since the processing time, due date, set up
time, holding cost and shortage cost of each job are
uncertain, the final completion time, starting time,
earliness and tardiness are also uncertain and can be

suitable for real

represented by a triangular membership fimction. We
design a hybrid algorithm to solve the formulated
scheduling model. Effectiveness of the proposed
algorithm is demonstrated through some numerical
experiments.

ASSUMPTION NOTATION AND
MATHEMATICAL MODEL

In this study, the assumptions and notations for
FFFLPs are described as follows:

ASSUMPTIONS

¢ Hach machine can process only one job at a time

¢ All jobs are available for machine processing
simultaneously at time zero

*  Jobs are not pre-emptive

¢  FHach job has m tasks to be executed in sequence on
m machine centers

* All machine centers have the same number of
identical machimes

¢ The processing times, due date, set up times, holding
cost and shortage cost membership functions of each
task are triangular and known

NOTATIONS
I=1,2,....n . The jobs to be scheduled
k=1,2,....m . The machines
1=12...,m . The stages
G =(C,+C,+C) : Completion time of job 1
Cy=(Cy, +Cy+Cy) 1 Completion time of job 1 in stage
B, =(E, +E, +E.) . Harliness of job i
L=(T,+T,+T) : Tardiness of job1
d=(d, +d,+d) . Due date of job 1
R =(R,+R,+R,) : Ready timeofjobi
B =(P,+P,+P,) . Processing time of job 7 in stage ]
S; = (8, + S + S0 . Set-up time of job i in stage j
H=(H,+H,+H,) : Holding cost of job 1 per time unit
U, =(U, +U,,+U,) : Shortage cost of job i per time unit

Ex =B+ By +B
Ci=(C+C+C)
B { 1 if jobi in stage j is allocated to machine k

: Starting time of job 1 n stage j

24

ik 0 otherwise

A fuzzy flexible flow-line system is defined by the set
M = {1,..j,....m} of m processing stages (machine
centers). Fach stage j, j € M is a set composed of k
identical machines. Set T = {1,....i,... ,n} composed of n
independent jobs has to be processed at the M stages
and one of K identical machines at each stage. Each job 1,
i €T is considered as a sequence of m operations with
processing times (20, jeM) B =(F, +P, +P ). The jth
operation of a job at the jth stage can commence only
after the completion of (j-1) previous operations from the
sequence. Processing of each job can not be started
before its release date and each machine can process only
one operation at a time. All jobs are available at time zero.
Thus, the fuzzy flexible flow-line mathematical model is
defined as follows:

Min  z=Y" (FE +BT) (D)
Subject to:
C+E-T=d i=12..n (2)
L Xp =1 i=12..N, j=12...m (3
S Xp=k k=LK j=l..m &)
Ciony— Cipp +LOU-X) 2 B +§; (5)

i=L2,..,N, j=L2,..m, k=12..K

ol 2232105‘] +8) i=L2..N (6)

U m2U+B5+8; i=12...N, j=12....m (V)

i, §+1

U, 2R, i=L2...N (®)
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Kp=01 i=12..N, j=12,..m k=12..K (9

(E,TU)20 i=12...N, j=12,..m (10)

The objective 18 to mmimize the total fuzzy holding
and shortage cost associated with earliness and tardiness.
Relation (2) reflects the fuzzy earliness or fuzzy tardiness
for each part with respect to the defined fuzzy due date.
Relation (3) indicates that job 1 m stage j requires only one
machine. Relation (4) guarantees that a machine can
process at most one job at a time. Relation (5) assures that
completion time of each job that immediately precedes
another job is greater than or equal to the sum of fuzzy
processing and set-up times of that job on all machines. In
this relation L denotes larger positive mumber. Relation (6)
ensures that completion time of each job m stage j 1s
greater than or equal to the sum of fuzzy processmng and
set-up times on all machines. Relation (7) shows that total
fuzzy starting time of each job at stage j 1s greater than or
equal to its fuzzy starting time in the previous stage and
its fuzzy processing and set-up times at that stage.
Relation (8) represents the starting time constraint for job
1 and Relations (9) and (10) represent the state of the
variables.

HEURISTIC ALGORITHMS

As described earlier, an ordinary flow-line scheduling
problem is a problem with only one machine at each stage.
So, it’s a NP-hard type problem. Two-stage problem
would also be NP-hard i case there 1s more than one
machine in each production stage. Thus, HFS problem is
generally considered as an NP-hard and the complexity
level of the problem increases significantly with the
number of stages. In this paper a heuristic approach is
presented based on three algorithms. (1) job allocating
algorithm, (2) production scheduling algorithm for each
ordinary flow-line and (3) resource leveling algorithm. In
the first algorithm, the order and sequence of the jobs to
be done on machines are determined. In the second
algorithm, the allocated jobs are ordered and scheduled
on each machine and finally, in the third algorithm
resource leveling for each job is performed according to
its fuzzy due date. If after several iterations, no
unprovement 1s observed in the solution then stopping
condition is satisfied.

Algorithm 1: allocating jobs to machines: This algorithm
mcludes the following steps:

Step 1: Calculate the total fuzzy processing times in each
work center.

f} =Zi1f)h

i=12..m, B =(B.P,.B.)

far fhe e

B=@uBp) (1)

Step 2: Calculate the average time required for each
machine in each work center.

0. -

- B. B 12

PJ.:L:_J j=12,..m a2
K K

m which, K 1s the number of machines at each stage.

Step 3: Determine the bottleneck work center by fuzzy
ranking numbers.

B=(p,p,.P) (13)

Step 4: Sequence the existing jobs in the bottleneck work
center | according to SPT rule.

i S S Py (14

i which, j 1s the bottleneck work center.

Step 5: Assign K jobs to machines mn stage | from the
ordered list in step 4 (These jobs have the minimum
processing time in stage j)

Step 6: Assign the next job m the list to a machine with
the smallest allocated processing time.

Step 7: Continue calculation until all jobs of stage j are
assigned to a machine.

Step 8: Provide a list of these jobs and then distribute
other jobs of the work centers to machines by fuzzy
ranking numbers.

In step &, according to list of the assigned jobs to
each machine, K flexible flow-lines are decomposed into
K ordinary flow-lines.

Algorithm 2: The allocated jobs: In order to solve the
fuzzy ordinary flow-line problems regarding the total cost
minimization objective of the fuzzy tardiness and
earliness, a hybrid approach (EDD+IIT) has been
developed. In this approach an mutial sequence 1s
determined using the EDD rule. The difference between
fuzzy earliness and tardiness values 1s mimmized using
the JIT criteria, n which a job 1s replaced with another job
until a specific job sequence is obtamed. In this study,
the jobs are considered to be individual, independent and
processed on all machines. The problem n/m/F/ET,,, 1s
solved as follows:

Step 1: Order all jobs according to EDD rule and then
allocate them to machines in the obtained order.

dyy sdgy ... dyy (15)

2061



J. Applied Sci., 8 (11): 2059-2066, 2008

Step 2: Calculate the completion time (C;) for each job on
all machines according to the sequence obtained in
Step 1.

Cy=max(C,;,C )+ B (16)

i1,
Step 3: Calculate the completion time for each job ()
when the operation is completed on all machines.

Step 4: Calculate the fuzzy earliness and tardiness values
for each job according to the sequence obtained in step 3.

T, :max(o,é;&,) E, :maX(O,alf(le) amn
Step 5: Calculate the sum of the fuzzy earliness and
tardiness values (Z,) for all jobs instep 3.

Z,=Y" (E+BT) k=12...K (18)

Step 6: Ilmprove the operational sequence in fuzzy
ordmary flow-line problems. This step mcludes the
following sub-steps:

(a) Choose the job with maximum fuzzy tardiness value
m the operational sequence determined m step 3. If
there 13 no fuzzy tardy, go to algorithm C.

T =max(T,T,..T) (19)

(b) Choose the job with maximum fuzzy earliness value in
the determined operation sequence in step 3. If
there’s no fuzzy early, go to algorithm C.

E, =max(E E,...E,) (20)
(¢) Change the sequence of the chosen jobs m step (a)
and (b) to the operation sequence in step 1.

Step 7: Recalculate step 3, 4, 5 for the new operation
sequence.

Step 8: Comparison criterion and better solution
determination, calculate the Z, value for the new state
and go to step 9.

Step 9: Algorithm stopping condition, which mcludes the
following sub-steps:

(a) If new Z, value is greater than or equal to the
previous Z, value go to algorithm C.

(b) If no remarkable wnprovement 1s observed go to
algorithm C (minimum remarkable mmprovement 1s
considered to be 5%).

(¢)y If number of iterations reaches
algorithm C.

to 20 go to

Step 10: If none of the stopping conditions mentioned
above are reached and the new Z_ value is less than the
previous one, replace Z, by the new Z, value and go to
Step 6.

Algorithm 3: leveling the remaining resources: This
algorithm includes the following steps:

Step 1: Calculate the fuzzy earliness and tardiness for K
ordinary flow-lines.

2=, YL AE+RT=Y HEE+FT) (2D

Step 2: Calculate the fuzzy earliness and tardiness for
each ordinary fuzzy flow-line.

Zyw=2 HE  Zy,=%"BT k=12..K (22)
Step 3: Improve the operational sequence in fuzzy flexible

flow-line. It includes the following sub-steps:

(a) Determine the fuzzy ordinary flow-line with maximum
fuzzy tardmess. This job has the maximum fuzzy
tardiness among K ordinary flow-lines. If there’s no
ordinary flow-line with fuzzy tardiness value we stop.

T = max (ZTU),ZT(E),...,ZTM) (23)

(b) Determine the fuzzy ordinary flow-line with maximum
fuzzy earliness. This job has the maximum fuzzy
earliness among K ordmnary flow-lines. If there’s no
ordinary flow-line with fuzzy earliness value we stop.

Bmmt(Zyg 2y Zag) (24)

B> TE(2)?

(¢) Choose the job with maximum fuzzy tardiness value
in the determined fuzzy ordinary flow-line in step (a).
If there’s no line with fuzzy tardiness value we
stop.

"fk:max( " 2,...,T“) (25)

(d) Choose the job with maximum fuzzy earliness value in
the determined fuzzy ordinary flow-line in step (b). If
there’s no line with fuzzy earliness value we stop.

2062



J. Applied Sci., 8 (11): 2059-2066, 2008

Ek=max(E1,E2,...,]::n) (26)

(e) Replace the chosen job in step (¢) from the selected
fuzzy ordinary flow-line in step (a) with the chosen
job n step (d) from the selected fuzzy ordinary flow-
line 1n step (b).

Step 4: Reapply algorithm B for the two selected fuzzy
ordinary flow-line in steps (a) and (b) with respect to the
resource leveling.

Step 5: Comparison criterion and the better solution
determination; Calculate the 7 value for the new state
using relation (21) and go to step 6.

Step 6: Algorithm C stopping condition, which includes
the following sub-steps:

Table 1: Comparison of STE for three methods

(a) Ifnew Zvalue is greater than or equal to the previous
7 value we stop.

(b) If no remarkable improvement 1s observed we stop
(mimmum remarkable improvement 1s considered to
be 5%).

(¢) TIf the number of iterations reaches to 20 we stop.

Step 7: If none of the stopping conditions mentioned
above are reached and the new Z value is less than the
previous one, replace Z by the new Z value and go to
Step 2.

COMPUTATIONAL EXPERIMENTS
The efficiency of the proposed algorithms is verified

by choosing 400 random instances with the followng
characteristics:

(STE)
Problem No. of Optimal solution EDDHIIT Ave!
size problems optimal Ave?
INMEKD solved a b c b c solution EDDHIIT dev.
20x5%3 5 15.21 22.65 3542 21.15 22.65 42.65 23.54 25.74 933
20%8x3 8 16.11 24.12 37.18 2216 24.13 43.52 24.97 27.04 830
20x10x3 10 17.25 26.15 3941 24.28 2697 45.25 26.88 29.57 10.02
20%12%3 12 19.41 31.18 41.12 2816 31.25 46.28 30.88 33.24 7.66
20x15%3 15 21.15 35.27 42,15 2911 3512 48.74 34.07 37.06 879
30x5x5 5 2541 36.45 48.11 31.18 36.45 49.15 36.56 37.69 311
30x8x5 8 27.11 39.75 50.12 3215 39.81 54.18 39.38 40.93 3.96
30x10x5 10 28.19 42.84 61.17 3419 43.17 65.19 43.46 45.35 4.35
30x12%5 12 32.18 45.27 62.11 37.28 46.15 67.15 45.90 48.18 4.97
30x15%5 15 3541 48.44 65.19 3941 48.94 68.32 49.06 50.59 311
50x5x8 5 41.15 51.28 69.11 4211 51.28 70.12 52.57 52.99 0.81
50x8x8 8 42.17 52.18 70.15 4218 5276 71.18 53.51 54.07 1.05
50x10x8 10 46.11 54.29 71.12 4915 5538 72.19 55.74 57.15 2.54
50x12x8 12 52.15 56.44 74.19 5312 56.59 76.18 58.69 59.28 1.02
50x15x8 15 56.11 58.99 75.11 57.34 59.37 77.19 61.20 62.01 1.32
80x5x10 5 59.15 61.85 76.19 61.11 62.18 79.18 63.79 64.84 1.64
80x8x10 8 61.12 63.24 76.89 62.62 64.14 79.19 65.17 66.40 1.90
80x10x10 10 62.17 65.41 77.34 62.89 66.28 84.21 66.69 68.71 3.03
80x12x10 12 62.85 66.81 79.41 63.19 67.11 85.41 68.14 69.51 2.02
80x15%10 15 63.11 68.85 80.11 65.21 68.25 86.65 69.77 71.48 245
100x10%12 5 65.15 69.21 81.19 69.15 70.12 89.24 70.53 73.15 3.71
100x15%12 8 67.18 71.95 82.25 70.16 72.11 90.12 72.88 74.79 2.63
100x20=12 10 69.15 72.45 85.18 71.12 73.14 92.15 74.03 75.98 2.64
100x25%12 12 - - - 75.16 80.25 95.11 - 81.88 -
100x30=12 15 - - - 79.27 80.87 96.17 - 83.16 -
120%10%15 5 - - - 81.11 83.15 97.31 - 85.17 -
120%15%15 8 - - - 8219 84.12 99.16 - 86.31 -
120%20%15 10 - - - 83.18 8517 101.17 - 87.51 -
120x25%15 12 - - - 83.48 86.18 104.18 - 88.73 -
120x30=15 15 - - - 85.47 87.12 105.62 - 89.93 -
150x10=17 5 - - - 82.25 88.45 107.62 - 90.62 -
150x15%17 8 - - - 86.11 89.11 109.83 - 92.07 -
150x20%17 10 - - - 87.15 90.25 111.72 - 93.32 -
150x25%17 12 - - - 89.11 91.50 11541 - 95.09 -
150x30=17 15 - - - 90.11 92,10 119.51 - 96.34 -
200x10%20 5 - - - 9211 9522 125.18 - 99.70 -
200x15%20 8 - - - 95.12 96.47 129.34 - 101.73 -
200x20%20 10 - - - 946.15 96.98 131.83 - 102.65 -
200%25%20 12 - - - 97.19 98.21 134.76 - 104.14 -
200x30%20 15 - - - 98.35 99.17 139.52 - 105.96 -

L: (at4b+c)/6, 2 (at4b+c)/6,
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Table 2: Comparison of time for three methods

(STE)
Problem No. of Optimal solution EDDHIIT Ave!
size problems optimal Ave?
(NMED solved a b C a b C solution EDDHIIT
20x5%3 5 7.25 13.19 28.15 3.45 7.24 11.25 14.70 7.28
20x8x3 8 8.48 15.12 30.42 4.52 10.11 16.11 16.57 10.18
20x10x3 10 9.12 16.18 3217 5.48 11.15 17.15 17.67 11.21
20%12%3 12 10.25 27.51 34.15 7.25 15.27 19.12 25.74 14.58
20x15%3 15 17.28 2917 37.45 9.28 18.19 22,18 28.57 17.37
30x5x5 5 18.49 37.15 45.17 11.29 19.48 2517 35.38 19.07
30x8x5 8 19.27 38.11 46.28 13.48 19.79 26.11 36.34 20.72
30x10x5 10 20,12 48.17 49.28 18.38 22.18 27.25 43.68 22.40
30x12x5 12 21.15 48.25 50.42 20.29 25.41 2911 44.10 25.18
30x15%5 15 2228 59.17 62.15 21.87 27.57 3273 53.52 27.48
50x5x8 5 27.15 61.27 65.21 25.43 32.48 38.49 56.24 3231
50x8x8§ 8 29.18 64.42 67.42 27.63 35.87 41.72 59.05 35.48
50x10x8 10 37.47 T6.11 79.51 34.62 38.25 45.63 70.24 38.88
50x12x8 12 39.50 79.26 80.28 37.79 41.17 48.73 72.81 41.87
50x15%8 15 40.12 84.45 85.40 40.49 45,27 51.82 77.22 45.57
80x5x10 5 52.18 92.55 83.25 44.72 48.61 55.29 84.28 49.07
80x8x10 8 65.19 94.17 95.43 49.82 51.17 59.47 89.55 52.33
80x10x10 10 7211 96.15 99.27 53.19 56.15 62.59 92.67 56.73
80x12x10 12 91.15 107.18 109.42 56.62 58.17 66.73 104.89 59.34
80x15%10 15 97.16 109.25 110.27 59.28 61.15 69.53 107.41 62.24
100x10=12 5 99.17 115.18 122.15 61.62 65.87 71.34 113.68 66.08
100x15=12 8 100.18 148.11 149.27 64.42 68.16 76.19 140.32 68.88
100x20%12 10 110.25 179.18 185.42 66.62 71.47 86.64 168.74 73.19
100x25%12 12 - - - 69.85 70.49 92.11 - 76.08
100x30=12 15 - - - 72.38 71.18 99.48 - 78.77
120x10=15 5 - - - 76.49 78.51 103.53 - 82.35
120%15%15 8 - - - 78.12 80.47 109.82 - 84.97
120%20%15 10 - - - 81.37 81.78 114.38 - 88.76
120x25%15 12 - - - 85.29 80.11 121.64 - 94.07
120x30=15 15 - - - 89.51 88.15 128.39 - 100.11
150x10%17 5 - - - 94.47 80.18 136.52 - 111.60
150x15%17 8 - - - 105.52 91.76 142,18 - 120.37
150x20=17 10 - - - 114.51 95.12 149.46 - 129.03
150x25=17 12 - - - 121.72 99.18 157.38 - 139.31
150x30%17 15 - - - 136.71 107.51 167.29 - 146.58
200x10%20 5 - - - 142.81 110.18 176.81 - 156.17
200x15%20 8 - - - 152.29 115.59 189.61 - 168.23
200x20%20 10 - - - 163.38 120.17 192,59 - 175.69
200x25%20 12 - - - 170.52 126.15 207.39 - 183.78
200x30%20 15 - - - 179.62 131.19 219.71 - 194.91
* Dimensions of the problems are between (NMK) dev=100(STE,,, -STE_)/STE_, (27

= (20%5x%3) and (NMK) = (200x300x20)

*  Set-up times for each job at each stage are chosen
fuzzy numbers (1, 8, 15).

¢ Holding (earliness) and shortage (tardiness) costs for
each job at each stage are chosen fuzzy numbers
(1,8,15).

¢ Operation processing time for each job at each stage
is chosen fuzzy numbers (10, 25, 40).

* Due date for each job at each final stage 1s chosen
fuzzy numbers (150, 300, 450).

To solve the above problems, a computer program
has been developed based on (EDD-+IIT) algorithm. This
algorithm 1s evaluated on the basis of the deviation from
the optimal solution using the formula:

where, STE is the sum of fuzzy tardiness and earliness
costs.

The results obtamned by using Eq. 27 is shown in
Table 1. It can be seen that the results of the proposed
heuristic solution are very close to the optimal solution.

Comparative results reveal that the solution time
obtained by EDDAHIIT approach 1s less than those
obtained by the optimal solution (Table 2).

Figure 1 provides a compariseon of the solution time
in (EDDHIIT) and optimal sclution. Figure 2 provides a
comparison of objective function value in (EDDAHIIT) and
optimal solution.

Moreover, EDD+IIT algorithin 1s able to solve
large size problems with a high accuracy in a lesser time
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2507 === Optimal solution
= EDIHJIT

200+
o 1501
100+
50

c L] T T L} T L] T T T

1 5 9 13 17 21 25 29 33 37

No. of problem

Fig. 1: Comparisen of time in the two methods

1209 ——— Optimal solution
— EDDHIIT
100+

80

STE

601
40
201

n
u T T T T T T T

L] T
1 5 9 13 17 21 25 29 33 137
No. of problem

Fig. 2: Comparison of STE in the two methods

compared to the optimal solution software algorithm
(conventional method). The conventional method has a
limited executing time 1.e., 240 min, in which the huge
problems can not be solved in due times, but the
proposed program can solve large size problems in less
than 240 mimn.

CONCLUSION

Appropriate  scheduling not only reduces
manufacturing costs but also reduces the possibility of
violating due dates. Finding good schedules for given set
of jobs can thus help factory supervisors control job
flows and provide for nearly optimal job sequencing.
Scheduling jobs m flexible flow-lines has long been
known to be an NP complete problem. Since task
processing times, set-up times, due dates, holding costs
and shortage costs in real applications are usually
uncertain, in this paper;, we have proposed a fuzzy hybnd
scheduling algorithm for scheduling jobs in flexible flow-
lines with m machine centers. The scheduling results are
a fuzzy set and can help system managers have broader
views of scheduling and make good analysis.
Computational experiments presented in this research
imply the near optimal utilization of the limited resources
(bottleneck) and its superiority over mteger linear
programming from the time reduction point of view.

Moreover, it was shown that due to the computational
complexity and time increase in the solution of large size
problems, the EDD+IIT approach seems to be much
better.
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