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Abstract: In this study, we investigated numerically the transient natural convection in a square cavity with
two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different
temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written
in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the
Altemating Direction Tmplicit (ADI) method and the GATISS elimination method. Calculations were performed
for air (Pr = 0.71), with a Rayleigh mmmber varying from 2.5x10° to 3.7x10°. We analysed the effect of the
Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state
to oscillatory flow and the second 1s a subharmonic bifurcation as the Rayleigh number 13 mereased further.
For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with
horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a
Rayleigh number varying from 2.5x10°to 2.51x10°. A limit cycle settles from Ra = 3x10° and persists until
Ra=5x10°. At a Rayleigh number of 2.5x10’ the temporal evolution of the Nusselt number Nu(t) was stationary.
As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a
critical Rayleigh number between 2.5x10% and 2.51x10°. After the first HOPF bifurcation at Ra = 2.51 %10, the
oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.
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INTRODUCTION

Natural convection is a recurrent phenomenon in the
world around us and most of these natural convection
flows are turbulent, especially those encountered in
engineering applications. Unsteady and turbulent natural
convections have thus attracted increasing interest over
the last decades for two main reasons: first, the desire to
our phenomenological understanding of
turbulent natural convection and second, the pressing
need for numerical models capable of predicting the

mprove

corresponding flow structures and related heat transfer in
industrial applications. Natural convection flows in
enclosures are usually subdivided mto two mam classes,
those heated from below and those heated from the side.
The configuration of the differentially heated cavity
models in many engineering applications such as cooling
of electronic components, nuclear reactor insulation,
ventilation of rooms etc., involves building system
containing multilayered walls, double windows and other

energy systems like
solar collectors, energy storage devices, furnaces, heat
exchangers, materials processing such as solidification

alr gaps in unventilated spaces,

phenomena and growing crystals. A literature survey over
the last decades shows that the natural convection
transfer equations are solved using the stream function
and vorticity formulation and the implicit numerical
method proposed by Douamna et al. (1999). The simple
generalised differentially quadrature method has been
used by Shu and Week (2002). In the past years, most
studies relevant to natural convection in cavities have
focused on laminar steady and transient flow regimes
(Devahldavis, 1983), transition to unsteadiness and route
to chaos (LeQuere and Behma, 1998, Ndame, 1992). The
conclusions are as follows: a laminar steady natural
convection was observed for small values of the Rayleigh
number. When the Rayleigh number 1s mncreasing above
a critical value, unsteady convection 1s observed due to
the loss of stability of steady solutions. Victorri and
Blondeaux (1991) numerically studied the transition
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process that leads to the oscillatory flow over a wavy
wall from a periodic behaviouwr to chaos using a
FEIGENBAUM scenario. They found that by increasing
the Reynolds number, the flow experiences an infinite
sequence of period doubling (Pitchfork bifurcation) which
takes place at successive critical values. Yoo and Han
(2000) have studied numerically the bifurcation sequences
to the chaos in a natural convection in a horizontal
annulus cavity. For a Prandtl number Pr equals to 0.1, the
HOPF bifurcation appears for a critical Rayleigh number
equals to 1700. Skouta et al. (2001) showed that in an
inclined cavity filled with air, the critical Rayleigh number
is equal to 1.11x10° for the first bifurcation. Gollub and
Besson (1980) identified experimentally four different
routes to turbulence in Rayleigh-Benard convection:
Transition to chaos via quasi-periodic state with two or
three incommensurable frequencies, period-doubling and
intermittency. The bifurcation sequence to temporal chaos
(Schuster, 1984) has been an interesting subject in many
areas of nonlinear systems and has also been studied
widely in fluid dynamics. Many routes to chaos have
been found theoretically and experimentally for free and
forced convective flows. Lamsaadi ef al (2006) have
studied numerically and analytically the flow and heat
transfer characteristics and multiplicity of steady states
for natural convection in a horizontal rectangular cavity
filled with Non Newtonian power-law fluids and heated
from all sides. This problem has been implemented in
some industrial thermal processes.

Mukutmoni and Yang (1993) found two transitions
which were documented numerically. The first transition
was from steady-state to oscillatory flow and the second
was a subharmonic bifurcation as the Rayleigh number
was increasing further. This study has been done in a
rectangular enclosure with insulated side walls. The
aspect ratios were 3.5 and 2.1 and the boussinesq fluid
was water with a Prandtl mumber of 2.5. Bratsun et al.
(2003) have studied both experimentally and numerically
the convective flow in a tall vertical slot with differently
heated walls. The flow was investigated for the fluid with
Prandt] mumber Pr = 26. They noted that it started with a
plane parallel flow as primary solution, thus became
unstable to two counters propagating waves. As the
Grashof number was increasing even further, a chaotically
oscillating cellular pattern consisting of the pieces of
broken waves arised. The formation of a structure in the
form of wvertical rolls chaotically modulated along axes
concluded this complicated picture. Kuang e# al. (2006)
have developed an algorithm for suppressing the chaotic
oscillations m non linear dynamical systems. This
algorithm used the Lyapunov-Krasovskii (LK) method.
The main attention of the study of Yu and Leung (2003)
was focused on the computation of the SNF (the sumplest
normal form) of HOPF bifurcation with perturbations
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parameters. Tshida et al. (2006) have proposed an accurate
and simple method to evaluate the Lyapunov spectrum.
This method is suitable for any discretization method that
finally expresses a governing equation system in the form
of an ordmnary differential equation system. The method
was applied to evaluate up to the second largest
Lyapunov exponents for natural convection in a
rectangular cavity with heated and cooled side walls.

Prasad and Das (2007) have presented a study of
mixed convection inside a rectangular cavity. The integral
form of the governing equations were solved numerically
using finite-volume method. SIMPLE algonthm with
higher-order upwinding scheme was used. The Grashof
number has been given the values of 0, 10" and 10°, while
the aspect ratio (height/width) was fixed to 0.5, 1 and 2,
keeping the Prandtl number (Pr) = 1. A HOPF bifurcation
has been observed at Gr = 10°.

The problem of natural convection in a cavity with
adiabatic horizontals walls and verticals walls composed
of two regions of same size mamtained at different
temperatures and with upper half temperatures less than
the lower half temperature, has been studied, at our
knowledge, only by Tahnke et al. (1998). For symmetric
boundary conditions, the structure of the flows is, in
some ways, sinilar to the Rayleigh-Benard problem in
Hele-Shaw cells. Our main attention for this study was to
describe the routes to the chaos and to investigate the
periodic, the quasi periodic and the chaotic regimes. In the
present case, we considered that the cavity is filled with
air which a Prandt] mumber equals to 0.71 and an aspect of
ratio of 1. Transfer equations were solved by an implicit
finite difference method. Forward differences were used
for the time derivatives and central differences for space
derivatives. The velocity components were calculated
with a central finite difference approximation of the stream
function. The effects of Rayleigh numbers on the natural
convection and the roads of the chaos that the system
borrowed have been studied. We plotted the temporal
evolution of the hot global Nusselt number, we
represented the amplitude spectrum with the Fast Fourier
Transform (FFT) and the attractors in a space trajectory.

We calculated the fractal dimension versus the space
trajectory dimension. Chaos was determmed by
calculating the largest Lyapunov exponent. This exponent
was estimated using a one dimensional time series. In this
case, the average temperature was used as the time series.

PROBLEM FORMULATION
We considered an enclosure with a ratio
a-H,
L

were H 13 the height and L the width. The horizontals
walls are adiabatic and the verticals walls are composed of
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Fig. 1: Physic model

two regions of same size maintained at different
temperatures. The upper half temperatures are less than
the lower half temperature. Figure 1 shows the schema of
the physical model along with the system of coordinates.
The bottom wall coincides with the origin of a Cartesian
coordinate system in which the x-axis 1s the horizontal
distance from the left vertical wall and the y-axis 15 the
vertical distance measured from the bottom wall that 1s in
the opposite direction to the gravitational force.

In this enclosure filled with air, transfers are
governed by the natural convection equations. The
following assumptions are made:

The thermo physical properties of the fluid are
constant except for the density variation that induces
the buoyancy forces, which follow the Boussinesq
approximation.

The viscous dissipation i the energy equation
15 neglected. The flow is laminar, bi-dimensional
and mcompressible. Radiation exchanges between
walls are neglected. Air is supposed to be an ideal
gas

Under these the
equations using the stream function-vorticity formulation
are as follows:

ay }
+ ?

aaQ o
aXZ + 2
oy

assumptions, dimensionless

(1)

a9 N au) N AvQ) _
a x ay

!

} + Ra.Pr% (2)
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Where, Q is the dimensionless vorticity, ¥ the
dimensionless stream function, u the dimensionless
velocity component along the x-direction and v the
dimensionless velocity component along the y-direction.
The boundary and initial conditions consist of:

Initial conditions

(a) t<ty t; Corresponds to the time when the vertical walls
are subjected to the temperatures T, (hot) and T, (cold).

O<x<l, O<y<1: T=0Q=0%=0u=0v=0

Boundary conditions

R
Otz=t, x=0,x=1,0<y<slu=0wv=0 ‘P=OQ:—¥/FD_1
1
X=0,X=1,0£y£E,T=1
1
X:O,X=1,5<y§1,T=0
H
T(x;—)=0.5
( 2)
2
0<x <1, y=0, y=1:u=0,v=0 TzOQ:_;—TIFM%/FDFO

The average Nusselt numbers are defined as follows.

12 AT Lz _aT

Cn thehotwall Nu= [ | —— *dyt [|— || *d
{(axL 4 ![m]l v

17 1 _
On the cold wall Nu= I[EJ *dy+ | [ﬂ} * dy
X
172 x=0 172 x=1
NUMERICAL PROCEDURE

The energy, the momentum and the elliptic Poisson
equations for the stream function associated to the
boundary conditions are solved using the Alternating
Direction Implicit method [ADT] and the Gauss algorithm
method. The velocity field 13 calculated by central
differences scheme. For the iterative method, the
convergence criterion for ¥ 1s defined as:
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while the convergence criterion for T or Q is defined as

K, n+l K:n
fu - fij

max <10°®

2

Where, =T, Q, . F¥ and ' are the values of T or Q
at iterations kand (k+1), respectively.

FRACTAL DIMENSION

The signal sampling allows the reconstitution of not
only the trajectory but also a set of N points on this
trajectory. These N points reveal the fractal structure of
the attractor based on their positions symbolized by the
coordinate vector {X}. In fact, Grassberger and Procaccia
(1983) proposed the following correlation function:

N RPLEL — =
ofr)= fm ez He R -X)

=1

Where, H(x) represents the Heaviside function, which
is equal to O for x <0 and 1 for x > 0. The symbaol ||... ||
represents the Euclidian norm vector, 1 and j represent the
point indexes and r is the radius of the hyper-sphere
containing the N points.

For the N selected points, the function becomes

1 8 .
C[r):EZZH(r—HX‘—XJH)

=i

We sum for the mndex j, 1.e., we mvestigate the ]
points relatively to the X, origin. Thus, we obtain:

C(r)= %;H(r—‘

X -X ]

C(r) is proportional to the average number of points from
the set pomts that are located inside the hyper sphere
centered in some i points of the set:

C(r) ~N(1)

For a small value of the radius, this number is proportional
to the dimension N{r). For an attractor, N{r) ~r°
where d is the fractal dimension; it is proportional to

log N{r)
log(r)
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For a small value of r, d is obtained from the slope of the
characteristics maps log (N (1)) = £ (log (1)).

Lyapunov exponent: A chaotic solution X (t) 1s
represented by a strange attractor. The sensitivity of the
imitials conditions 1implicates a positive Lyapunov
Exponent (Ly). This result shows that the next curves are
divergent. For a periodic and quasi periodic solution, the
Lyapunov exponent is negative. All the chaotic
phenomenon are very sensitive to imtials conditions.

The discrepancy Ax between two values @, and @,
which are mitially very close evolved with the time follows
an exponent law:

KAV AUN
$; (0} — 4y (to)

L :lln
t

Where:
Ly =
t

Largest Lyapunov exponent
Non dimensional time

¢, and &, are the same parameter calculated from the
different imitial condition but very imminent.

RESULTS AND DISCUSSION

Ours calculations were performed for the mesh
121#121 with a step time of 107", We represented the
stream function lines in Fig. 2a-¢ and the isothermal lines
inFig. 3a-c for a Rayleigh number of 10°, 10" and 10°. The
flow is quadricellular for a Rayleigh number equals to 10°,
the cells are symmetric over the vertical axis. The flow is
anything in the vertical and horizontal median axes. The
cell in the left inferior zone and those localised in the right
superior zone turn in the trigonometric sense, the cell
turns in the clockwise sense. Figure 3a shows that the
heat transfer is purely conductive.

In Fig. 2b and c, there 1s a big cell at the centre of the
cavity which turns in the trigonometric sense and drives
the heat correctly through the cold wall. In Fig. 3b, the
isotherm lines represent a thermal stratification while
Fig. 3¢ shows that the 1sotherm lines walk along the wall
of the cavity. A boundary layer appears and the 1sotherms
are then crowded.

By increasing the Rayleigh number, the attractor
reaches a stable state. In Fig. 4, the phase trajectory 1s a
limit peint at Ra = 2.5x%10°, This limit peint losses its
stability and allows the periodic solution to appear at
Ra = 3%10° according to the theory of Floquet (Berge and
Pomeau, 1998).

The solution 18 a stable attractor which corresponds
to a limit cycle in Fig. 5. With a Rayleigh number of 5.10°
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Fig. 5: Limit cyele, (a) temporal evolution, (b) phase space and (¢) amplitude spectrum

there is doubling period apparition which corresponds to
a sub harmome bifurcation. At a Rayleigh number equals
to 7x10° the space trajectory is a tore (Fig. &) and a new
bifurcation appears; thus, the system undergoes some
instabilities which lead to the chaos. This phenomenon
has been showed at the Rayleigh number of 10° as seen in
Fig. 7 and the whff appears at the Rayleigh number of
1.5x10° and this state is intermittent Fig. 9. The dynamic
system evolve and attractor become strange as in Fig. 8
for a Ra = 3x10° because the attractor dimension is fractal.
The obtamed bifurcations follow the Ruelle and Takens
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scenario (Berge and Pomeau, 1998). In Table 1, we
computed the relative errors between the theoretical
attractor dimension and the values obtained from our
code. The wvalidation is thus acceptable since the
discrepancies between the values are from 0.83 to 2.32%.
In Table 2, we show that the fractal dimension 1s varied
with the Rayleigh number and the space trajectories
dimension. We plotted the characteristics curves for the
theoretical attractors and for the attractors of our system
in Fig. 10 and 11, respectively. These curves confirm our
results.



Fig. 6: Tore, (a) temporal evolution, (b) phase space and (c¢) amplitude spectrum
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Table 1: Theoretical altractor dimension
Theoretical attractors Britain Cantor Henon Koch
Reference 1.16 0.63 1.21 1.26
Our work 1.18 0.64 1.20 1.29
Relative error 1.69% 1.56% 0.83% 232%
Table 2: Attractor dimension
Space trajectory dimension
Ra
(=109 2d 3d 4d 5d 6d
2.5 0.00 0.00 0.00 0.00 0.00
3 1.04 1.04 1.01 1.01 1.03
5 1.10 1.08 1.05 1.05 1.12
7 1.85 1.91 2.01 2.02 2.08
10 2.00 231 2.54 2497 286
15 1.96 1.98 1.89 1.93 2.03
30 1.95 2.57 2.73 293 2.92

Initial conditions sensibility: Figure 12 shows, for a
10°,  the temporal
temperature calculated

Rayleigh number equals to

evolution of the average
from different initial values; these values are very
close (error of 107*). We notice that the curves are first
almost overlapping, then they separate and evolve

differently.

Divergence grade of evolution: In Fig. 13, we show the

discrepancy between T, , and T,,,. The curve is plotted
with a logarithmic scale. We note that the discrepancy
increases with time according with the exponent law. An
estimation of the largest Lyapunov exponent is done by
the average slope of the curve. The obtained value, 78.94,

confirms the sensitivity of the initials conditions.
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CONCLUSION

In conclusion, the unsteady natural convection
study has showed a transition to the determinist chaos.
We examined the dynamic phenomenon in a filled air
enclosure. For the determination of the system state, we
used the Fast Fourier Transform, the largest Lyapunov
exponent and the fractal dimension attractor. We plotted
the space trajectory for different Rayleigh numbers and
then dimensioned the attractors. We noticed that the
temporal evolution of the total Nusselt number is
asymptotic for a Rayleigh number equals to 2.5x10°.

The range of the first bifurcation has been localised
between a Rayleigh umber of 2.5%10° and 2.51x10°. The
gystem trangits from the limit point to the limit cycle
according to a HOPF bifurcation. At a Rayleigh number of
3%10°, the flow is periodic. When the Rayleigh number
increases, the attractor undergoes some period doubling
and for a Rayleigh number equals to 5x10°, this
phenomenon appears in the temporal evolution. At a
Rayleigh number of 7> 10°, the attractor becomes a tore in
the space trajectory. The tore undergoes an instability
and becomes chaolic at a Rayleigh number of 10°. We
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obtained the laminar window for a Rayleigh number
equals to 1.5x10°. We noticed that the chaotic whiff are
longest and approach.

Then the chaos installs definitively at a Rayleigh
number equals to 3x10°. The system states have been
quantified from the space trajectories. We have elaborated
a code based on the Grassberger and Procaccia
formulation for the attractor dimension. Our code has
been validated with acceptable relative errors. The
attractor dimension values are conform to the space
trajectory. The largest Lyapunov exponent has been
calculated and concluded that the attractor is Strange.

NOMENCLATURE

a = Thermal diffusivity (m? sec™)

A = Aspect ratio (height/length)

g = Acceleration of the gravity (m? sec™)

Gr = Grashof number

H = Cavity height (m)

L = Cavity length (m)

Ly = Lyapunov exponent

Nu = Nusselt No.

Pr = Prandtl No. =w/a

Ra = RayleighNo. =g fH°A T/y.a

Ra, = Critical Rayleigh number

t = Dimensionless time

t° = Time (s)

T = Dimensionless temperature

T. = Cold wall temperature (°C)

Th = Hot wall temperature (°C)

T = Average temperature for the first initial condition

T.w2 = Average temperature for the second initial
condition

AT = Temperature difference = T,-T, (°C)

u = Dimensionless velocity component along x-
direction

v = Dimensionless velocity component
along y-direction

w = Velocity component in the x-direction (m sec™)

v’ = Velocity component in the x-direction (m sec™)

x = Dimensionless horizontal coordinate axis

y = Dimensionless vertical coordinate axis

¥’ = Horizontal coordinate axis (i)

vy’ = Vertical coordinate axis (m)

f = Signal frequency (sec™)

¥ = Dimensionless stream function

¥ = Stream function (m* sec™)

Q= Dimensionless vorticity

Q' = Vorlicity (sec™)

¢ = Density (kg m™)

v = Kinematic viscosity (m® sec™)

p = Coefficient of thermal expansion (1/K)
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