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Abstract: This mvestigation studies two-machine flow-shop scheduling problems in which both machines are
versatile and setup time is considered. First, a modified branch and bound algorithm for determining the optimal
schedule is developed to minimize the makespan of jobs for these problems. Second, a genetic algorithm is used
to rapidly find near-optimal schedules for large scale problems. Finally, computational experiments are
performed to illustrate the effectiveness and efficiency of the proposed algorithms.
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INTRODUCTION

A review of the literature shows a trend in industry
away from grandiose schemes such as Flexible
Manufacturing System (FMS) to much more focused,
smaller, manageable levels of factory automation (Kumar
and Shankar, 2000). Presently, because of changing
market demands, manufacturing strategy has switched
from high-volume production of narrow product lines to
medium-volume to low-volume batches of various
products. Consequently, the FMS which offers the
flexibility to produce economically in lots of any size is
becoming mncreasingly important in modern industrial
settings (Pan and Chen, 1997). An FMS, according to
Saygin and Kilic (1999), consists of a group of machine
centers, intercormmected via a set of automated material
handling and in-process storage systems, which are all
control by an integrated computer system. The flexibility
of FMS is achieved through the use of versatile machine
centers. Unlike the conventional assumption that only
one of each type of machine 1s available, some of the
machines can perform alterative operations in addition to
their own primary ones.

Ahn et al. (1993) incorporated alternative operations
mto a scheduling system to increase resource utilization
and reduced the makespan of manufacturing products.
Liao et al. (1995) presented two integer programming
formulations for a permutation flow-shop in which
processors are flexible to perform other operations
besides therr own Gere (1996) mvestigated several
heuristic algorithms for traditional job-shop scheduling
and concluded that alternative operations improve
productivity. They showed that the production

requirements can be completed earlier by employng
alternative machines. Jeong and Kim (1998) studied a real-
time scheduling methodology which uses simulation and
dispatching rules for flexible manufacturing systems.
They developed a scheduling mechanism in which job
dispatching rules vary dynamically based on mformation
from discrete event simulation that is used for evaluating
candidate dispatching rules. Pan and Chen (1997) studied
the problem of scheduling a set of jobs each of which
consists of two consecutive operations. The jobs are
processed in a two-machine flow-shop in which either or
both machines are versatile and the processing times of
the operations of each job are mdependent of job
sequenice. The objective was to mimmize the makespan.
They showed that this scheduling problem is NP-
complete and developed a branch and bound algorithm to
solve it. Guerrero et al. (1999) examined the influence of
alternative operations on FMS performance. They applied
a linear programming model to prescribe production plans
and employed adaptive control mechanisms to implement
these plans. Shanker and Modi (1999) proposed a branch
and bound technique to determine an inter-dependent
multiple-product  resource-constrained  scheduling
problem with the objective of makespan minimization in a
flexible manufacturing system with resource flexibility. For
the same problems, Cheng and Wang (1998) provided a
general pseudo-polynomial dynamic programming scheme
which solves the problems analytically.

The earlier studied consider scheduling with
altemative operations, but do not mclude machine setup
times. Schaller ez al. (2000) considered the problem of
scheduling part families and jobs within each part family
mn a flow line manufacturing cell where the setup times for
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each family were sequence-dependent and it was desired
to mimmize the makespan while processing parts (jobs) in
each family together. Rajendran and Ziegler (2003)
presented efficient heuristics for scheduling jobs in a
static flow-shop with sequence-dependent setup times of
jobs. The objective 1s to minimize the sum of weighted
flow time and weighted tardiness of jobs. Kurz and Askin
(2004) exammed scheduling m flexible flow lines with
sequence-dependent setup times to minimize makespan.
Ruiz e al. (2005) dealt with the permutation flow-shop
scheduling problem in which there were sequence-
dependent setup times on each machine and the
optimization criterion considered was the minimization of
the makespan. Chen and Pan (2005) developed the
development of a mixed Binary Integer Programming (BIP)
model for scheduling alternative operations in two-
machine flow-shop problems with mean tardiness as the
criterion.

The literature considering setup time on scheduling
manufacturing systems with alternative operations is
scarce. Lee and Mirchandani (1988) were the first to study
a two-machine flexible flow-shop problem and showed
that the problem could be reduced to three versions of
zero-setup, one-setup and two-setup problems. The zero-
setup problem meant that there was no operation shift on
both machines, the one-setup problem meant that there
was just one operation shift on one of the machines and
the two-setup problem meant that there were two
operation shifts with one on each machine. Cheng and
Wang (1999) derived a worst-case error bound for the
heuristic presented by Lee and Mirchandani (1988) for the
NP-complete one-setup version of the two-machine
flexible manufacturing cell scheduling problem and
proposed another heuristic with a worst-case error bound
of 3/2.

This investigation examimnes the scheduling in a two-
machine flow-shop in which both machines are versatile
and where setup time 1s considered such that altemative
operations and machine setups can take place. This study
focuses on the two-setup problem presented by Lee and
Mirchandani (1988). A modified branch and bound
algonthm based on the Pan and Chen’s (1997) branch and
bound technique is developed to find the optimal
schedule. A genetic algorithm 1s used to rapidly find the
near-optimal schedule for larger problems. Computational
experiments are conducted to illustrate the effectiveness
and efficiency of these algorithms.

PROBLEM DESCRIPTION

A scheduling problem can be described in terms of its
job characteristics, its shop characteristics and the
optimality criterion with which the evaluation of each

schedule can be made (Pinedo, 2002). The specific two-
machine flexible flow-shop that is considered in this study
is described below:

Job characteristics

¢ Fach job I, has two operations, X and Y.

*  Each job requires the processing of firstly operation
type X and then operation type Y.

*  The processing time of the operations of each job are
known and fixed.

*  The operations are not pre-emptable.

+ Al jobs are immediately available for processing
once production begins.

Shop characteristics

*  The shop consists of two machines, M, and M,

¢ FHach machine can perform both operation types. M,
and or M, may be versatile.

+  FEach machine can perform only one operation at a
tume.

¢ The setup operation, Sgy (S), changes the tool-set
for operation type X (Y) with the tool-set for
operation Y (X). Both setup operations are assumed
to take the same amount of time to perform.

¢ A setup operation must be performed when the
machine needs to perform the other operation type.

¢ The transfer or transport time of a job from one
machine to the other 1s negligible.

Optimality criterion

¢ The objective is to schedule the operations and
setups so as to minimize the makespan.

The plan for processing these n jobs requires two
distinct operations performed in the order operation type
X followed by operation type Y, where M, has operation
type X as its primary operation and M, has operation type
Y as its primary operation. Therefore, all the jobs are
loaded and processed m the sequence M, followed by
M,, if no alternative operations occur. Although
altemmative operations may suffer from efficiency
penalties, they can be used to improve machine utilization
and system performance when one machine 1s overloaded
and the alternative machine is idle.

Let p;, and p; denote the processing times of X of I,
on machines M, and M,, while ¢, and g, are the
processing times of Y of I, on M, and M,, respectively.
For two-machine flow-shop scheduling with alternative
operations, Pan and Chen (1997) investigated the
following three problems:
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¢ The M-M, problem. In this problem, M, is a
versatile machine and M, 1s dedicated to operation Y
and thus py, =<, 1=1, ...,n.

*  The M,~M, problem. In thus problem, M, 1s dedicated
to operation X and M, 15 a versatile machine and thus
Qg =171, ..., n

*  The M,~M, problem. In this problem, both M, and
M, are versatile.

This study builds upon the research of Pan and Chen
(1997) and focuses on the M, M, problem. This study
also considers setup time while the machine needs to
perform the other operation type. The objective 13 to
sequence a set of jobs on the two machines to minimize
the maximum completion time, or makespan.

Modified branch and bound algorithm: Pan and Chen
(1997) presented a branch and bound algerithm to solve
two-machine flexible scheduling problems. However, they
neglected the machine setup times. This study considers
setup times and extends the branch and bound approach
of Pan and Chen (1997).

Undoubtedly, for any feasible schedule for the
two-machine flexible flow-shop with setup times problem,
all jobs can be divided into four disjoint sets E,,, where u
=1,2and v =1, 2, such that the X and Y operations of all
jobs in E,, are scheduled on machines M, and M,
respectively. Imitially, all jobs are set to belong to E,; and
the optimal schedule 15 identified using Johnson’s rule
(Johnson 1954). If the operations of the jobs belong to E,
or E,, or E,, they are called alternative operations. Pan
and Chen (1997) proved this problem belongs to the class
of difficult problems known as NP-complete. This study
considers the scheduling problem of minimizing makespan
in a two-machine flexible flow-shop with setup times.
Clearly, the proposed problem is NP-complete since the
problem of scheduling alternative operations in
two-machine flow-shops 1s NP-complete (Pan and Chen,
1997).

Lemma 1: For the two-machme flexible flow-shop with the
setup time scheduling problem, an optimal schedule exists
with at most two setups, of which at most one 1s n each
machine and both are Exy type.

Proof: The proof is straightforward.

Lemma2: For the two-machine flexible flow-shop with the
setup time scheduling problem, an optimal schedule s*
exists in which there 13 no 1dle time before any operations
assigned to at least one of the machines.

- X » :: Y
M, E, I Ey Exj E, I Ey
M B T EEIE] Ey

-+ X » ot Y >

Fig. 1: A feasible schedule

Proof: Similar to the proof of Lemma 3 by Cheng and
Wang (1998).

According to Lemmas 1 and 2, By and all jobs in each
set B, (u, v =1, 2) can be scheduled as shown in Fig. 1.

Lemma 3: If altemative operations are known, the
two-machine flexible flow-shop with the setup time
scheduling problem can be solved in polynomial time.

Proof: In situations mvolving predefined alternative
operations, the machine setup(s) and machine processes
for each operation are known and fixed, so the
two-machine flexible flow-shop with the setup time
scheduling problem reduces to n/2/G/C,,, problem, which
can be solved in polynomial time by Johnson’s rule.

Let I; denote the job scheduled at the ith position in
a particular processing sequence. Moreover, let py; and
Pz be the processing times of X of J;; on machines M,
and M, and let qy, and qj;, represent the processing times
of Y of I;; on machines M, and M, respectively.
According to Lemma 3, the C_ . of the two-machine
flexable flow-shop with the setup time scheduling problem
can be calculated as follows.
Procedure for calculating C__,
Step1: Set TM, = TM, = 0, TM, and TM, as the
current time when M, and M, finish the job
processing, respectively.
Set CE,,[+] = CE,['] = 0, CE,j['] and CE,[] as
the current time when M, and M, finish
processing the operations belonging to E,; and
E,,, respectively.
Set NE,, as the number of jobs belonging to
type B, whereu=1,2andv =1, 2.
If NE,, # 0, according to Johnson’s rule, we
obtain optimal schedule (T, Jyp. - Jrye )
For (1=1;1 < NE;; i++) {TM, = TM, + py.;
CE [Tl = TM,}.
If NE,, # 0, the optimal schedule is arbitrarily,
e U dpp oo Jugyy ) For 1= 15 1< NE;; 1++)
{TM, = TM, + py, +
If NE,, # 0, according to Johnson’s rule, we
obtain optimal schedule (T, T, .., Jiyg, 1)
For (1=1;1 < NE;;; i++) {TM, = TM, + py:
CEm[J[q] =TM,}.

Step 2:

Step 3:

Step 4:
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Step 5: It NE,, # 0, the optimal schedule is arbitrarily,
&g Jup T -5 Trugyy -
For (1=1:1< NE,; i++) {TM, = TM, + py.}.
Step 6: Lett denote the setup time. If (NE,, = 0 or NE,,
2 0), TM, = TM, + t.
Step 7: If(NE,, # 0 or NE,, # 0), TM, = TM, +1t.
Step 8: If NE, = 0, calculate TM, according to the
schedule as step 3.
For (i=1;1< NE,; i++) {TM, = TM, + q;,}.
Step 9:  If NE, # 0, calculate TM, according to the
schedule as step 4.
For 1= 1,1 < NE,; i++) {TM, = max(TM,,
CE[TyD + g}
Step 10: If NE,, # 0, calculate TM, according to the
schedule as step 5.
For (1=1:1 < NE,; i++) {TM, = TM, + g1}
Step 11: If NE,, # 0, calculate TM, according to the
schedule as step 2.
For 1=1;1 < NE,;; i++) {TM, = max(TM,,
CE[gD+qusb-
Step 12:  Set C_,. = max(TM,, TM,).

An illustrative example: To illustrate Lemma 3 and the
procedure for calculating C, .. consider the five-job
problem shown in Table 1. First, all jobs are set to belong
to E;;. The initial schedule is obtained by Johnson’s rule
as (1,1, 15, T, L)y with C_ = 47. Finally, we set {I,, I} €
E, I,€E,. ], €E,;and ], € E,, then according to Lemma
3 and the procedure for calculating C,,., we obtain new
Chow = 39. The Gantt chart of the example problem is shown
mFig. 2.

For any given schedule of the two-machine flexible
flow-shop with n jobs, the total number of possible
sequences when alternative operations are considered i1s
2% If no alternative operations are performed, an optimal
solution can be obtained by applymng Johnson’s rule for
the n/2/G/C,,, problem. Consequently, this solution can
be used as an initial feasible schedule and is designated

Level 0

Fig. 3: Branching tree of an M1 «M?2 problem

by 8,. Figure 3 shows a typical branching tree with 16
nodes for scheduling the two-machine flexible flow-shop
with two jobs. These nodes correspond to the 16 possible
sequences for a given imtial schedule when both
machines are versatile. Node 0, representing the initial
solution, is the initial node and the remaining nodes are
numbered m the order they are produced by the following
branching tree generation procedure. Let node s be a
node in the branching tree and let § denote the unique
parent node of s. Moreover, define oy as the operation
numberj of job I, where1=1,2,. . ,nandj =1, 2. Atncde
s, let A, represent the job whose second operation 1s an
alternative operation while its first operation is not; and
let B, denote the job whose first operation is an
alternative operation and whose second operation 1s not.
Similarly, C, denotes the job of which both operations are
processed by alternative machines. Finally, D, is the job
in which both operations are performed by their
respective primary machines. Clearly, A, B,, C, and D, are
mutually exclusive and together they constitute the entire
alternative operation type associated with the job. The
Jjob number k! in Fig. 3 shows that node s has
alternative operation type x of job k! , where x =1 denotes

Table 1: Data of the example problem

Operation type X Operation type Y
Job i pa/pp (M /M) /g (M /M)
Iy 3/4 10/13
I, 811 6/7
I3 5/6 912
i 3/4 9/10
Is 6/9 10/15
- X > - Y >
M, E,(J2 | E.(0) Enl) |Fxo| Eull) |  Exll)
v |BOEGE] E0) | EL | EO
j—X — o Y »
4 8 12 16 20 24 2§ 32 36 40

Fig. 2: Gantt chart of the example problem
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the job belongs to A,, x = 2 represents that the job
belongs to B, and x = 3 denotes that the job belongs to C..

Let 8, denote the schedule represented by node s.
Node s depicts the introduction of an alternative
operation for oy, and oy, into the schedule represented by
node s . For example, node O represents the initial
schedule S; which contains no alternative operations.
Morecover, node | indicates that o), in S, is an alternative
operation performed by M,. Descending from o},;;, node 2
includes alternative operation for o), in the schedule
since 1ts parent 1s node 1 in the branching tree and so on.
Therefore, given S, the set of all the altemative
operaticns performed at node s 18 the collection of all the k?
values by tracing node s upward until node 0 is reached
in Fig. 3 and its schedule is determined by Tohnson’s rule
due to Lemma 3.

The branching tree in Fig. 3 can be produced by the
following procedure.

The branching tree generation procedure

Step1 : Set child node s =0, parentnode § =0, level
L=0andjob ki =0.

Step2 : Setx =1 todenote the jobs in A

Step3 : Tncrease I by 1. Set s=s, s = s+l and
generate a child of §, nodes. Set kf =k’ +1.

Step4 : If k! =n, gotostep 5. Ctherwise, go to step 3.

Step 5 : Setx =2 to denote the jobs in B..

Step6 : Sets=st+l,=ki =1 +1.

Step7 : If k! =n, gotostep 5.

Step8 : Increase L by 1. Set § = s, 5 = s+1 and
generate a child of , node s. Set k¥ =k +1.
Gotostep 7.

Step 9 : Setx =3 to denote the jobs in C..

Step10: Sets=s+1. kKl =kl +1.

Step11: If k! =n, gotostep 13

Step 12 : Tncrease L. by 1. Set § = s, 5 = s+l and
generate a child of S, nodes. Set k2 =k +1.
Gotostep 11.

Step 13 : If L. =1, stop. Otherwise, go to step 14.

Step 14 : Decrease L. by 1, set s = s+1 and generate node

s.8etx=1and kX =k’ +1. Gotostep 4.

Define I, and I, as the idle times of M, and M, m
schedule S, respectively. In S, we then have

Isl = Cmax(s)_ Z Pa — Z (pu +q1l)_y_ Z Oy

1,eD, Tieh, Jiet,
Where:
_ [t (A, or C,)= @, @ denotes the null set (1)
Y 0 otherwise

and
IsZ = Cmax(s)_ Z P — Z (pa +q‘2)—Z— Z i
1,0, I,eB, <Dy
Where:
St if(B,orD,)»@ (2)
0 otherwise

Define T, as the time when M, finishes the
processing of all he jobs that are assigned to it in S,
where q =1, 2. Moreover, let I', denote the idle time of M,
based onits T,

Then
r,=T,- Z Py — Z (py+ay)-y- Z Qi
;€D Tieh, JieC;
Where:
t if(A C &
yo if (A, or .s): (3)
0 otherwise
and
I',=T,- Z Piz— Z (py+9y)-2— Z 9,
Ji<C, J;<B, JieD,
Where:
t if(B D &
yo if (B, or .s) = (4)
0 otherwise

The 2™ number of possible sequences is not the only
contributor to the complexity of the problem. The idle
times can be used as a basis for fathoming dominated
sequences. For M »M, with setup time problems, an
increase in the C,__, value at node s does not mean that
node s can be fathomed. A more alternative operation
down the branching tree may reduce the C,..
Consequently, only the nodes at the bottom level of the
branching tree can be fathomed.

Lemma 4: Consider node s which includes the alternative
operation for Y of I, € A in the schedule. Node s is
fathomed by its parent node, S, if any of the following
two conditions hold.

e (Ayor CoH#Qandqy, > [ .
. (A or C) =Qand (q+t) = L.

Proof: Based on the definition of C_,(S)and C,(s), the
following two situations exist.

o Tf({A. or C.) # @ thenC (s)-C,(S)=1,-1,+
Q= 0. Since I, » 0 and qp;, > I, . Hence, the total
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production time C,_.(s) is not decreased if the
alternative operation occurs.

e If(C, or D;) =@, then C__(s)-C_.(S)=1,-1,,+
(qitt) = 0. Since I, > 0 and (qp;,+t) = I, . Hence, the
maximum completion time C,.(s) is not decreased if
the alternative operation occurs.

Lemma 5: Consider node s which includes the alternative
operation for X of I;; € B, in the schedule. Node s is
fathomed by its parent node, S, if any of the following
two conditions hold.

e (Bior Dy Gandpy, = 15, .
(B; or D;)= Qand (py; + 0 L.

Proof: Similar to the proof of Lemma 4.

Lemma 6: Consider node s which includes the alternative
operation of J; € C, in the schedule. Node s is fathomed
by its parent node, S, if both the following conditions
hold.

e Lither (A; orCs) # @andqy—pyz 1y . or (A; or C5)
=@and gy — py Tt 15

¢ FEither (B; or D;) # @
and pg; ~ qp 2 Iy, or(B; or D) =0
and Prz ~ dmz Ttz I .

Proof : For any schedule S, of node s, there exist

. T51=I;1+Zpi1+Z(pxl+qi1)+y+Zqil
TieD, Len, It

Where:

[t if{A,erC) 2@
Y= 0 otherwise

g T52=I'52+Zp‘2+2(p12+q12)+2+2q‘2

Tiel, T,€E, 1,eD,

Where:
St if(B,or D)= @
o otherwise

Suppose both operations of J,; are processed by
alternative machines. From the definition of T,;, T,,, T
and T, the following two situations exist.

e Since quy—pup = 'y if (A; or C) # @ and q-
Papnttz Iy if(A; or C;) =@, then T, = Ty, .

¢ Since Py — G = 'y if (B; or Do) # @ and py,—
Quptt = I if (B or D) =@, then T,,= T, .

H

Hence, C,.(8) - C..(S)=max (T,, T,;)-max (T,,T,)
> 0. Thus, the introduction of the alternative operations
for both oy, and o, does not decrease the maximum
completion time.

Modified branch and bound algorithm

Step 1: Set s = 0 and set all jobs to belong to D,. Apply
Johnson’s rule for the n/2/F/C,_,, problem to find
an initial schedule without considering any
alternative operations. Calculate the idle time I,
I T and Ty,

Step 2: Generate a new node s by the branching tree
generation procedure. If no such node can be
generated, go to step 4. Otherwise, go to step 3.

Step 3: Apply Lemmas 4-6 to node s. If node s can be
fathomed, go to step 2. Otherwise, find makespan
according to the “procedure for calculating C_ ...
Calculate the idle time and go to step 2.

Step 4: Stop.

A genetic algorithm approach: Previous researchers have
assumed that a genetic algorithm contains the following
main  components: representation,
population and population size, fitness of the members in

solution initial
a population, selection of parents, genetic operators and
a termination criterion (Chen et al., 1995). The following
discusses the mgredients of a genetic algorithm based
heuristic for a two-machine flexible flow-shop scheduling
problem with consideration of setup time.

Solution representation: For a scheduling problem, a
structure can be easily described as a sequence of the
jobs in the problem. However, in a two-machine flexible
flow-shop scheduling problem, the structure must be
slightly modified to display the operation’s alternative
situation. The structure can be described as a disjointed
jobset(e.g., B, B\, B, and E,)).

Generation of initial population and population size: The
efficiency of genetic algorithms can be markedly increased
by selecting a good 1mtial population and reascnable
population size. This heuristic sets the population size to
equal n. The initial population uses the n schedules
produced by method of each schedule has only one job
with an alternative operation. For M, »M, with the setup
problem, the alternative operation type can be generated
randomly by selecting alternative machines M, or M,, or
both M, and M,. For instance, if we consider a six-job
problem, then the six schedules in the imtial population
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are 100000, 010000, 001000, 000100, 000010 and CO0001.
The schedule 100000, denotes J;;; € E,; and the other jobs
Jy & By, where 1 = 2, 3, ..., 6. Moreover, the digit 0
indicates one job that has no alternative operations, 1e.,
the job belongs to E,,. The digit 1 denctes that one job
has alternative operation(s) and that its (their) type may
randomly select one of M, M,, or both M, and M,, i.e.,
the job may randomly select one of B, E,,, or E,,.

Fitness function and the selection of parents: For a
maximization problem, the measure of performance
generally constitutes the fitness function. However, the
objective of scheduling problems is usually to minimize a
certain measwe of performance. For minimization
problems, the method of determining the fitness function
differs slightly from that for maximization problems. This
study now discusses the method used to determine the
fitness function for two-machine flexible flow-shop
problems.

The makespan for all the members in a population 1s
calculated using the Procedure for calculating C,_ .. From
this the largest makespan 1s determined and 1s denoted as
Cae The deviation of the malkespan of each member in the
population from the C,__ is the fitness value of that
particular member. This procedure ensures a high
probability of selection for a schedule with lower
makespan. This 15 also the criterion used for the selection
of parents for the reproduction of children.

Genetic operators: Genetic algorithms contain two
common genetic operators: crossover and mutation. A
crossover operator involves combining the elements from
two parent structures mte one or more child structures.
Mutation typically works with a sigle structure leaving
the parent intact with the population. Goldberg’s (1989)
Partially Mapped Crossover (PMX) operator, edge
recombination operator, subtour-swap operator, subtour-
chunk operator, subtowr-replace operator and weighted
chunking operator are some of the popular crossover
operators for scheduling problems (Chen er al., 1995).
This heuristic uses Goldberg’s (1989) PMX operator for
the purpose of crossover.

Termination criterion: The proposed heuristic uses the
number of generations as the termination criterion in our
heuristic. Agam, based on the trial examples, we found
that the solutions become stable after twenty generations.
Therefore, twenty generations is used as the termination
criterion in the proposed heuristic.

Genetic algorithm based heuristic: We are now at the
position to present the genetic algorithm based heuristic
for the two-machine flexible flow-shop problem. The
following notation will be used in describing the heuristic:

G(r) : The population in the r-th generation.
g(r) . The i-th member in G(r).

Clgi(ry) The makespan of g(1).

C_ . The max {C(g, (1))}, for all g,(r) € G(r).

(g, (1)) The fitness of g(r), which equals C _r)-
Clgilr).
SUMFIT(r) : The sum of f{g,(1)), for all gi(r) € G(r).

Procedure for implementing genetic algorithm

Step 1: Determine the initial population, G{r), where r=
0. The size of the population, POPSIZE, is n and
the number of generations considered, GENER,
is twenty.

Calculate the fitness value of each member,
f{g,(r)), for population, G(r).

Calculate the selection probability for each g;(r),
where the selection probability is defined as:

Step 2:

Step 3:

R iCAG),
Ple,(n) = SUMFIT(r)

Step 4: Select a pair of members (parents) that will be
used for reproduction via the selection
probability.

Apply the PMX operator to the parents. Replace
the parents with the resulting offspring to form
anew population, G(r + 1), for generationt + 1. Tf
the size of the new population equals the
POPSIZE, then go to Step 6, else go to Step 4.
If current generation, r+1, equals GENER, then

stop, otherwise go to step 2.

Step 5:

Step 6:

NUMERICAL INVESTIGATIONS

Computational experiments were conducted to test
the effectiveness of the proposed modified branch and
bound, as well as the efficiency of the genetic algorithms.
The processing times of operations performed by
respective primary machines were generated from a
uniform distribution of integers in [1, 100]. Meanwhile, the
processing times of operations performed by respective
alternative machines are v times those by the primary
machines, where v=1.2, 1.4and 1.6. All of the alternative
processing times were rounded to the nearest mtegers.

The algorithms were tested over three different
problem sizes, n =20, 25 and 30. Twenty replications were
randomly generated for each problem size. A total of 180
problems were thus tested. The computer programs were
coded m Visual C++ language and run on an Intel
P4/2.67GHz with 512 M SDRAM. Table shows the average
CPU time (sec) of branch and bound algorithm (B and B)
and Genetic Algorithm (GA), as well as the average
percentage error of GA for each 20 replications.
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Table 2: Computational results for B and B and GA model
Avg. CPU time (sec)

Avg. percentage

vl n Band B GA error of GA (96)
1.2 20 100.39 28.28 4.87
25 1031.51 T0.57 4.37
30 12201.28 22712 3.52
1.4 20 95.57 21.79 4.43
25 996.45 66,35 4.18
30 10201.25 20864 3.24
1.6 20 91.41 15.70 53.93
25 914.44 60.34 3.21
30 9801.51 197.61 2.98

TThe processing times of operations by respective alternative machines are
v times those by the primary machines

The effectiveness of the GA 1s measured by the
percentage error, which is defined as:

C,.(GA)-C, (B mdB)
C__(BandB)

Error (%) = % 100%

where, C_(GA) denotes the makespan obtamned by the
GA and C_(B and B) represents the optimal makespan.
Table 2 yields the following observations.

*  The modified branch and bound algorithm can solve
optimal schedule with 30 jobs in a reasonable time.
The time required to find an optimal schedule
increased nearly ten times for every increment of five
jobs in the problem size. The Branch and bound
algorithm can fathom a majority of the nodes, but the
total number of nodes increases at an exponential
rate.

* The genetic algorithm 1s efficient and the average
percentage error 1s less than 5%.

*  The magnitude of v decides the average CPU time.
That 1s, the larger the value of v the less the average
CPU timne.

* The average percentage error of GA decreases with
ncreasing v.

CONCLUSIONS

This study considers a scheduling problem in a
two-machine flow-shop in which both machines are
versatile and setup time 13 considered. A modified branch
and bound algorithm 1s developed to minimize the
makespan of jobs for these problems. The genetic
algorithm is also used to rapidly find near-optimal
schedules for large scale problems. The modified branch
and bound algorithm and genetic algorithm were tested
over three different problem sizes, n = 20, 25 and 30, for
the two-machine flexible flow-shop scheduling with setup
times. For the modified branch and bound algorithm, the
computation time increases at an exponential rate as the

problem scale grows. The genetic algorithm is effective
and that the average percentage error is smaller than 5%.

Future research may address problems under
different shop environments, including flow-shop and
job-shop. Problems with other performance measures,
such as mean flow time or mean tardiness, may also be
considered.
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