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Abstract: This study presents a multi-class Support Vector Machine (SVM) based method for on-line static
security assessment of power systems. To classify the system security status, a group of binary SVMs have
been trained. The multi-class Fisher score has been used for feature selection algorithm and the data selection
has been done based on the confidence measure, to reduce the problem size and consequently to reduce the
training time. The proposed method has been applied to New England 39-bus power system. The simulation
results demonstrate the effectiveness and stability of the proposed method for on-line static security

assessment procedure of large scale power systems.
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INTRODUCTION

The present trend towards deregulation has forced
modern electric utilities to operate their systems under
stressed operating conditions closer to their security
limits. Under these conditions, any disturbance could
endanger the system security. The static security of the
power system is defined as the ability of the system,
following a contingency, to reach an operating state
within the specified safety and supply quality (Kirschen,
2002). As a result, the security evaluation 1s a major
concern in the operation of modern power systems and
there is a pressing need to develop fast on-line security
monitoring method which could analyze the level of
security and forewarn the system operators to take
necessary preventive actions.

The evaluation of the present status of the power
system and the mnpact of possible line or generator
outage on the system security can be determined by
solving the nonlinear load flow equations for all possible
contingencies or for those ranked as the most important
cases (Kirschen, 2002). These numnerical methods are time
consuming and therefore are not suitable for on-line
applications.

The application of machine learning methods for on-
line security assessment has been proposed by many
researchers. For fast static security assessment Artificial
Neural Networks (ANN) (Neibur and Germond, 1991,
Shanti, 2008; Zhou et al., 1994; Wehenkel, 1998), Decision

Trees (DT) (Wehenkel, 1998; Hatziargyriou et al., 1994)
and Bayesian classifiers (Kim and Singh, 2005) have been
suggested.

The most popular method is ANN, because of its
ability to classify patterns and its good accuracy in
comparison with other machine learning methods. Its
disadvantages can be listed as follows:

¢+ Tt requires an extensive training process and a
complicated design procedure

» If some components of the pattemn vector are
strongly correlated, the methods become inaccurate
and an accurate feature extraction must be performed
to hopefully yield an uncorrelated set of components

+  Although neural networks are good in interpolation
but not good in extrapolation. Training sets have to
represent the different states of the power system.
This means that they need to comprise the complete
pattern space of the secure and msecure power
system operation. A large training set of input data
is necessary, to provide the best results in the
output.

Recently, Support Vector Machines (SVM), based on
statistical learning theory, have been used in the different
areas of machmme learning, computer vision and pattern
recognition, because of their high accuracy and good
generalization capability (Vapnik, 1999, Platt, 1998). The
main difference between ANN and SVM is in the principle
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of risk minimization (Scholkopf, 1998). Tn the case of SVM,
Structural Risk Minimization (SRM) principle is used to
minimize an upper bound on the expected risk. But for
ANN, traditional Empirical Risk Mimmization (ERM) is
used to minimize the error on the training data. This
difference leads to a better generalization performance for
SVM. The SVM has following advantages, too:

¢ The global optimum can be derived

¢ The over-fitting problem can be easily controlled by
the choice of a suitable data separation margin

*  The SVM algorithm 1s less sensitive to the size of
mput features and does not need to extract signal
features

*  SVM only needs a small quantity of samples to train
the classifier

The application of SVM for dynamic security
assessment has been reported by Moulin ef af. (2004) and
Wahab ef al. (2007). In these references, the superior
performance of SVM over ANN in terms of accuracy,
speed and distribution of high-risk cases has been
presented for a large scale power system transient
stabality.

In this study, different status for system security
as normal (class A), alert (class B),
emergency 1 (class C), emergency 2 or system splitting
status (class D); have been considered and a multi-class
SVM has been used to classify the power system
security.

The feature selection 1s one of the important steps in
the classification problem. In this study, Fisher-like
criterion (F-score) has been used for feature selection,

levels such

also a data preprocessing procedure to select SVs
candidates has been used, too.

SVM: SUPPORT VECTOR MACHINE

SVM has been mtroduced by Vapnik m the late 1960s
on the foundation of statistical learming theory (Vapnik,
1999). However, since the middle of 1990s, the algorithms
used for SVM have been started emerging with greater
availability of computing power, paving the way for
numerous practical applications.

Binary SVM formulation: The basic SVM deals with two-
class problems, in which the data are separated by a
hyper-plane defined by a number of Support Vectors
(SVs). The performance of the SVM can be explained
easily in two-dimensional plane, as shown in Fig. 1,
without any loss of generality. This Fig. 1 shows a set of
points for two different classes of data; circles (class A)

X“l ‘-\_{x|(x.w)+b =1}
{Z(xwyb=-1} * o

al ™ . A

¥i=-1 .\-

{x|(xw)+b =10}

Fig. 1: SVM based classification of data

and squares (class B). The SVM attempts to place a linear
boundary (solid line in Fig. 1) between the two different
classes and shifts 1t to maximize the margin (dotted lines
in Fig. 1). The distance between the boundary and the
nearest data point in each class must be maximized. The
boundary is then placed in the middle of this margin. The
nearest data points, used to define the margins, are known
as Support Vectors (gray circle and square m Fig. 1). Once
the Support Vectors (SVs) are selected, the rest of the
points can be discarded, since the SVs contain all the
necessary information for the classifier.

The boundary can be expressed by the followmng
equation:

(wx)+b=0, weR" beR (1)

where, the vector w defines the boundary, x is the input
vector of dimension N and b is a scalar threshold. At the
margins, where the SVs are located, we have:

(wx)+b=1 For class A (2

and

(wx)+b=-1  For class B (3)
As SVs comrespond to the extremities of the data
for a given class, the following decision function can
be used to classify any data point in either class A or
class B:

f(x)=sign((wx)+b) {4

The optimal hyper-plane separating the data can be
obtained as a solution to the followmng optimization
problem (Scholkopf, 1998):
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Fig. 2: Non-linear separation of input data and linear
separation in feature space

Minimize t(w)= %HWHE (5)
Subject to: y,((wx)+by =1, 1=12,.1 (&)

where, | 1s the size of the traiming set.
The solution of the constrained optimization problem
can be obtained as follows (Scholkopf, 1998):

w=Yvx, (7)
i=1
where, x, are SVs obtained from traming. Substituting

Eq. 2 m Eq. 4, the decision function can be obtained as
follows:

F(x) = sign [z VX + b] ®)

In cases where the linear boundary can’ not properly
separate two classes, 1t 1s possible to create a hyper-plane
that allows linear separation in the higher dimension. In
SVM, this 1s achieved by using the transformation ¢(x).
This transformation converts the data from an N-
dimensional input space (x) to a Q-dimensional feature
space as follows:

s =¢(x) (9)

where, x ¢ R" and s € RY Figure 2 shows the
transformation from the input space to the feature space
where the non-linear boundary has been transformed into
a linear boundary in the feature space.

Substituting the transformation Eq. 9 in Eq. 8 gives
the decision function as follows:

f(x)= sign[zlzvi((p(x).(p(xi))er} (10)

1=1

The transformation mnto lngher-dimensional feature space
1s relatively computation-intensive. A kermnel can be used

to perform this transformation and the dot product in a
single step provided the transformation can be replaced
by an equivalent kemel function. This pomnt helps in
reducing the computational load and at the same time
retaining the effect of higher-dimensional transformation.
The kernel function, K(x, x), 18 defined by the following
equation:

K = p(x)(x) (1)

The basic form of SVM is accordingly obtained after
substituting Eq. 11 in the decision function, i.e., Eq. 10. As
a result, we have:

f(x)=sign [i vKGLx)+ b} (12)

In Eq. 12, the perameter vi (0<vi<8) are used as a
weighting factor to determine which of the mput vectors
actually are SVs. There are different kernel functions.
Some of the commonly used kernel functions are
polynomial, Gaussian Radial Basis Function (RBF),
Exponential Gaussian Radial Basis Function (ERBF) and
sigmoid kernels which are presented in Eq. 13-16,
respectively (Scholkopf, 1998).

Kxx)=(y<xx >+ ,y>0, (13)
keexy = o (14)
Kixxh— e 4o (15)

K(xx) = tanh(y < xx'>+1), y>0, r<0, (16)

Multi-class support vector machine: SVM has been
originally designed for binary classification. There are two
approaches for multi-class SVM. The first one is based on
the construction and the combination of several binary
classifiers wlile the other one can directly consider all
data in one optimization formulation. Tn general, it is
computationally more expensive to solve a multi-class
problem than a bmary problem with the same mumber of
data. Therefore, methods based on constructing and
combining several binary classifiers are preferable to
methods based on solving a multi-class problem (Hsu and
Lin, 2002).

The most popular algorithms, which are based on
several binary classifiers, are: One-Against-All (OAA)
(Vapnil, 1998), One-Against-One (QAQ) (Platt et al.,
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Fig. 3: OAA; Multi-class SVM classifiers (a) class A
against others and (b) class B against others

1999), Direct-Acyclic-Graph (DAG) (Krebel, 1999) and
Half-Against-Half (HAH) algorithms (Lei and Govindaraju,
2005).

One-against-all  algorithm: The earliest used
mnplementation for SVM multi-class classification 1s
probably the One-Against-All (DAA) algorithm (Vapnik,
1998). Tt constructs k SVM models, where k i3 the number
of classes. The i" SVM is trained with all of the examples
in the i" class with positive labels and all other examples
with negative labels. Figure 3 shows the multi-class SVM
classifier by OAA for a four-class problem.

One-against-one algorithm: The One-Agamst-One
(OAQ) algorithm, constructs k(k-1)/2 classifiers where
each one is trained on data from two classes (Platt et al.,
1999),

There are different methods for domng the future
testing after that all le(k-1)/2 classifiers are constructed.
Most popular method is Max Wins strategy. In this
strategy, if

sign (i vEKEx)+ b]

i=1

says x 1s in the i class, then the vote for i" class is added
by one. Ctherwise, the j™ class vote is added by cne.
Finally we predicate that x 1s in the class with the largest
vote.

Direct-acyclic-graph algorithm: The third algorithm,
Direct-Acyclic-Graph (DAG), has been proposed by
Krebel (1999). Tts training phase is the same as the OAO
algorithm. However, in the testing phase, it uses a root
binary DAG which has k(k-1)/2 mternal nodes and k
levels. Each node is a binary SVM of i™ and i classes.
Given a test sample x, starting at root node, the binary
decision function is evaluated. Then it moves to either left
or right depending on the output value. Figure 4 shows
the DAG-SVM structure of a four-class problem.

Half-against-half algorithm: The latest algorithm is Half-
Agammst-Half (HAH), which 15 built via recursively

Fig. 4: DAG structure for a four-class classification

Fig. 5: HAH classifier structure for a four-class problem

dividing the training data set of k classes into two subsets
of classes. The structure of HAH 1s the same as a decision
tree which at each node 1t has a binary SVM classifier that
determines the class of a testing sample.

The trained HAH classifier model consists of at most
k binary SVM. If k 1s an even number it needs k binary
SVM and if k is odd it needs (k-1) binary SVM. For each
classification testing, HAH requires at most Jog,” binary
SVM evaluations. Figure 5 shows the HAH classification
structure of a four-class problem.

Both theoretical estimation and experimental results
show that HAH has advantages over OAA, OAQ and
DAG based algorithms in the testing speed, the size of the
classifier model and accuracy (Le1 and Govindaraju, 2005).
Considering these merits the HAH algorithm has been
used in this study.

PROPOSED ALGORITHM

The application of machine learning methods 1s
based on our knowledge about the behavior of the
system, obtained from a large number of off-line
simulations. These simulations define two data sets; the
traiming set and the testing set. The tramning data set 1s
used to derive the security evaluation structure and the
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Fig. 6: Flowchart of proposed algorithm

F

testing data set 13 used for testing the developed
structures. The tramning data set should cover the entire
demand space mcluding hourly, daily and weekly
variations of the system demend Considering these
points, the flowchart, shown in Fig. 6, has been
proposed for static security assessment in this research.

Creation of knowledge base: The First step in the
proposed algorithm shown in Fig. 6; is off-line simulations
for different operating points of the system. In this step,
the static security index will be calculated based on load
flow results. Theses simulations must be carried out for
different operating pomts at any contingency in the set of
possible contingency set. In this study, the following
Performance Index (PI) has been chosen to quantify the
severity of a contingency and to classify the system
security status. PT has been defined as follows (Kirschen,
2002):

N In
EOAR (7
n Sl

where, 5, 18 the apparent power flow (MVA) of the line /,
S s the maximum value of S, N, is the mumber of lines

in the system, n is the specified exponent of penalty
function and w;, 1s the real non-negative weighting
coefficient (may be used to reflect the importance of some
lines). In this study, n = 2 and w, = 1 (for all lines) have
been selected.

In order to classify the system static security status,
four different security levels have been considered,
normal (class A), alert (class B), emergency 1(class C,
correctable contingencies) and emergency 2 (class D,
non-correctable contingencies or system splitting status).
Based on the calculated PT index, the system security
status can be determined.

Feature selection: Considering the following points, it
can be said that one of the main aspects of the successful
use of machine learning methods 1s the feature selection:

»  Removing urmecessary or bad features can improve
the accuracy of most machine learning algorithms

¢ The feature selection does provide insights into the
quality and productivity of each feature

Several feature selection algorithms, such as
Pearson’s correlation coefficient, Fisher-like criterion and
Relief family, have been design for the feature selection
{Guyon and Elisseeff, 2003, Jensen et al., 2001; Yang and
Honavar, 1998).

In this study, Fisher-like criterion (F-score) has been
used for feature selection considering its simplicity and
accuracy. The Fisher score for a multi-class problem 1s
defined as follows:

0, -y
Fi=-t — (18)

Z:rlicri2
i1

where, n, 18 the number of data points in class 1, p, and g,
1s the mean and variance of class 1 corresponding to the
r* feature, respectively, C is the number of classes and p
is the mean value of the whole data set of the * feature.

Training data selection: The next step in Fig. 6, 15 the
training data selection. The data selection can be used for
fast multi-class SVM training. The main point is the
selection of the important data for SVM training. The
SVM decision function depends only on a small subset of
training data, called SVs. Therefore if one knows in
advance which patterns correspond to SVs, the same
solution can be obtained by solving a much smaller
problem that mvolves only the SVs. According to
Huanga et al. (2007) k-means clustering has been used for
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selecting patterns from the training set. According to
Yeung et al. (2007). Mahalanobis distance has been used
to 1identify SVs and boundary points. According to
Wang ef al. (2007) two data selecting algorithms have
been proposed. In the first algorithm, the training data
selection is based on a statistical confirm measure. In
the second algorithm, the mimimum distance from a
training example to the traimng examples of a different
class has been wused as a criterion to select the
important data.

The comparison of different data selection schemes
with the scheme based on the decision SVM outputs,
shows that the confidence measure provides a criterion
for training data selection that is almost as good as the
optimal critenion based on the desired SVM outputs. Also,
1t has been shown that the random sampling performance
is not good in comparison with the confidence measure-
based algorithm at low reduction rates (Wang et al., 2007).
In the confidence measure-based algorithm, a sphere
centered at each traimng example x, has been considered
(Wang et al., 2007). This sphere should be as large as
possible without covering a training example of a different
class. The number of training examples that falls nside
this sphere has been denoted by N(x;). Obviously, the
larger, the number N(x;), the more training examples (of the
same class as x;) will be scattered around x;, the less likely
x, will be close to the decision boundary and the less likely
%, will be a SV. Hence, this number can be used as a
criterion to decide which training examples should belong
to the reduced training set.

Based on this algorithm, N(x,) has been computed for

each traimng point and then the traiming data have been
sorted according to the corresponding value of N(x).
Finally, a subset of data with the smallest numbers N(x,),
has been chosen as the reduced training set. In this
algorithm, N(x) should be computed for each tramng
point.
Performance evaluation: The performance of the
proposed method has been evaluated by using Sensitivity
index of class 1, (SN¢)), Precision Rate index of class i,
(PRc)), for each class and Total Accuracy index (TA), as
follows:

SNc, = i
i Tc, +F, (19)
Tc
PRe, = :
& Te, + Fe,, (20)
c
> Tc,
TA = %
> Te, + 3 P, (21
i=1 i=1

Where:

C

Tc, = No. of cases which are actually in class C; and
classified correctly by the trained SVM

Fc; = No. of cases which are actually in class C, and the
trained SVM classified in other classes by the
trained SYM

Fc, = No. of the cases of other classes classified in class
C,, by the trained SVM

C = No. of classes

= Index of classes

i

In the problem presented 1 this paper, the numbers
of cases in different classes are not equal; therefore TA is
not enough as a total performance evaluation index. For
example, assume a test data set contains 40 class A, 30
class B, 20 class C and 10 class D cases. If all cases in
class D have not been predicated correctly and all of the
other cases have been predicated correctly, then TA is
equal to 90%. It seems that TA doesn’t have enough
information and a new evolution mdex for multi-class
classification should be presented. Tn this paper, this new
index is Balanced Error Rate (BER) as follows:

1.E  Fe
BER =— : (22)
C (,Z::‘ Te, + Fc‘)
CASE STUDY

In order to demonstrate the effectiveness of
proposed technique, results of the application of the
method to New England 39-bus power system have been
presented. A contingency list consists of 8 single line
outages has been considered. The load and generation of
buses have been randomly changed between 30% up to
130% of their base case, resulting in 2125 different
operating points. Among these operating points, 1500
points have been randomly chosen as the training data
set and the remaining 625 cases have been used as the
testing data set. In tlus study, the base case load 1s
6097 MW and system load has been changed from
1750 to 8250 MW,

All contingencies have been simulated one by
one and corresponding PI have been computed for
each
security status

operating point. Based on calculated PI, the
of each operating point for each
contingency has been determined. The number of each
class members in the training and testing data set is
given in Table 1.

All contingencies have been simulated one by one
and corresponding Pl has been computed for each
operating pomt. Based on calculated PI, the security

status of each operating point for each contingency has
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Table 1: No. of each class members

Table 3: ERBF kernel finction parameters for each binary SV

Class Training data set Testing data set Binary SVM Penalty parameter (P) v

A 9268 430 AB against CD 60 5.00
B 1795 470 A against B 60 5.00
C 630 152 C against D 30 5.25
D 307 72

Total 12000 5000

Table 2: Results of fisher criteria feature selection

Order Feature description Value
1 Reactive power of generator G9 0.382
2 Apparent power of generator G10 0.382
3 Apparent power of generator G9 0.372
4 Reactive power of generator G3 0.372
5 Apparent power of generator G5 0.367
6 Voltage at bus 32 0.365
7 Apparent power of generator G3 0.356
8 Active power of generator G9 0.345

been determined. The number of each class members in
the training data set and testing data set is given in
Table 1.

Feature selection: Line flows, currents, bus voltages and
systemn other parameters can be selected as a system
features. In thus study, 46 active power flows on branches,
46 reactive power flows on branches, 39 bus voltages,
39 active power injections on buses, 39 reactive power
injections on buses and a contingency identification
number (an integer mumber among 1 to &) have been
considered as the input of the proposed feature selection
algorithm.

The results of the first eight dominate features have
been shown in Table 2.

Training data selection: Here, N(x,) has been computed
for. The points with N(x)<2 have been selected for
reduced training data set. Based on these assumptions,
4823 points have been selected for multi-class SVM
tralmng process.

Parameter tuning: The first step in the training of SVM
classifier is to choose the kernel and its parameters. Four
kemel functions have been mentioned m the section I1.
For the polynomial and sigmoid kemel functions, r = 0 and
v = 1/k have been chosen. Where Ik is the number of
features (as a result, v = 1/8). A grid search has been
performed over the values of the penalty parameter, P for
each kemel, the parameter d for polynomial kernel and
parameter y for RBF and ERBF kemels. Figure 7 and 8 give
an example for the influence of penalty parameter P upon
the prediction performance on traiming set. These search
results show that the best result has been obtained by the
ERBF kemel function. The parameters for each binary
SVM have been presented in Table 3.

Table 4: No. of 8Vs for each binary SVM

Binary SVM No. of Vs
AB against CD 2789
A against B 3579
C against D 805
24-
20 \\
o 167N
g "
2 ~.
A \\"\
o e
41
5 10 15 20 25 30 35

P

Fig. 7: Influence of penalty parameter P upon the BER

100

98 /
o

B

TA (%)

b=
=

/—
86/

82

5 10 15 20 25 30 35
P

Fig. 8: Influence of penalty parameter P upon the TA

SVM training: Three binary SVM according to the HAH
classifier structure have been trammed. The number of the
SVs for each binary SVM has been presented in Table 4.

Performance evaluation: The SVM prediction results for
the testing data set and all training data set have been
shown in Table 5.

TA and BER for the testing data set are 98.71 and
0.63% and for the all training data set 96.51 and 2.14%,
respectively.

In order to show the effectiveness of the traming data
selection algorithm, the multi-class SVM has been trained
by using all of the traiming data set (1500 operating
points). In this case, the training time has been
approximately mcreased by ten times. Table 6 compares
the number of the SVs for reduced training data set and all
traiming data set. Table 6 shows that the proposed data
selection algorithm can remove a significant amount of
data while the trained binary SVMs are same.
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Table 5: Multi-class SVM prediction results

Sensitivity (SN) (%0) Precision rate (PR) (%)
Class Train data set  Test data set  Train data set  Test data set
A 97.53 96.91 99.43 98.32
B 97.43 95.53 96.22 97.18
C 95.68 94.60 96.21 95.11
D 96.32 96.68 97.14 96.32

Table 6: No. of 8Vs for reduced training data set and all training data set

Binary 8VM Reduced training data All training data set
AB against CD 2789 2791
A against B 3579 3620
C against D 805 812

CONCLUSION

A multi-class SVM based static security assessment
algorithim for power system has been proposed. The
proposed algorithm has been applied to New England
39-bus power system. Tt is shown that the proposed
algorithim 1s less sensitive to the size of input features and
1t does not need to extract signal features. This property
is very effective on power system monitoring and its
measurements for the system security assessment.

Also, it needs only a small number of operating
points to tram the classifier (only support vectors). This
capability is very useful to reduce the training data while
maintaining the generalization performance of the
resulting SVM classifiers and therefore the traiming time
1s reduced significantly.
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