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Abstract: This study presents the use of genetic algorithm methodology for identification of a micro-orgamsm
mixture batch fermentation process. This process is described by complex and nonlinear differential equations
according the mass balance. The parameters of the model are estimated using a multi-objective genetic
algorithm. Simulations of the model obtained show accuracy n prediction behaviour of the model.
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INTRODUCTION

Fermentation processes are very complex and their
modelling is rather a challenging task (Assidjo ef al., 2006;
Coleman et al., 2003; Garcia-Ruiz et al., 2008). Indeed,
dynamic models for industrial fermentations processes are
difficult to identify because of a wide varieties of reasons
e.g., micro-organisms complex dynamics, variables and
ill-defined raw materials, varying mocula quality
(Assidjo  ef al, 2006, Coleman et al, 2003
Garcia-Rwmz ef af, 2008). However, their study was
mtensively investigated and different models proposed
for control (Moore et al., 2001, Marin, 1999). A good
model must take into account the effects of substrate
limitation, substrate and products inhibition as well as
maintenance energy and cells death on the cell growth
and metabolism (Moore et al., 2001).

However, is neither necessary nor desirable to
construct comprehensive mechanistic process models that
can describe the systems in all possible situations with a
high accuracy.

In this mtention, many mathematical models have
been proposed to predict the influence of fermentation
operating parameters on cell growth rate, cell
concentration (biomass), substrate utilisation rate
(Sarkar and Modak, 2005; Trelea et al., 2004). The use of
these models may lead to the development of better
strategies for the optimisation of the fermentation process
to ensure its economic viability. In fact, few fermentation
models have been used for industrial scale fermentation
optimisation (Nandasana and Kumar, 2008).

Genetic algorithms have been widely used for
optimisation and system identification. They are robust,
global and generally more straightforward to apply in
situation where there is little or no a prionn knowledge
about the process to be controlled (Nandasana and
Kumar, 2008; Sarkar and Modak, 2005; Goldberg, 1989).
They are stochastic search technique for approximating
optimal solution within complex search spaces. They are
based upon the analogy with biological evolution, in
which the fitness of individual determines its ability to
survive and reproduce. Their mechamsm, as shown in
Fig. 1, starts by encoding the problem to produce a list of
genes (Yao ef al, 2007; Davis, 1991). The genes are
represented by either numeric or alphanumeric characters.
The genes are randomly combined to give a population of
chromosomes, each of which represents a possible
solution. Genetic operations are performed on
chromosomes that are randomly selected from the
population producing therefore offspring (Yao et al.,
2007, Polifke et al, 1998). The fitness of these
chromosomes 13 measured and the probability of their
survival 13 determined. In this study, a genetic algorithm
has been used for a batch fermentation parameters
identification.

MATERIALS AND METHODS

Data collection and treatment: The brewing fermentations
were performed using a Brunswick microferm fermentor
(New Brunswick Scientific Co. Inc., New Jersey, UUSA), in
batch mode. This micro-fermentor is characterised by a
volume of about 15 L. Tts vessel internal diameter is 10 cm
and its height is 50 c¢m.
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Fig. 1: Flowchart of genetic algorithm process

The wort was produced by crushing the malt into
coarse flour, which was then mixed with water. The
resulting porridge-like mash was heated to a selected
temperature that permitted the malt enzymes to partially
solubilize the ground malt. The resulting sugar-rich
aqueous extract (wort), was then separated from the solids
and boiled. The wort was then clarified, cooled and
poured in the vessel of the micro-fermentor for
inoculation. Tnoculated ferments were traditionally
produced by female brewers that use it for a well-known
local beer (tchapalo or dolo) making. This ferment 13 in
fact a mixture of micro-organisms contaming different
species (e.g., Saccharomyces cerevisae and Candida).
During the fermentation process (t = 0 to 18 h), different
parameters (pH, biomass, substrate, ethanol, carbon
dioxide) were measured. The responses concerned in this
study (biomass, substrate and alcohol (ethanol)) were
determined by gravimetric and refractometric methods and
refractometric method after a distillation, respectively
(Thonart, 2001).

For the purpose of this study, 30 batches were
performed.

Statistical analysis: In order to elimmate eventual outlier
fermentations and because of the trilinear form of data
(batches xtimexresponses), a PARAFAC analysis was
performed.

PARAFAC 13 a multi-way decomposition method
originating  from  psychometrics  (Rutledge and
Bouveresse, 2007; Khayamian, 2007). It is gaining more
mterest in chemometrics and associated areas for many
reasons: simply mcreased awareness of the method and
its possibilities, the increased complexity of the data dealt
with in science and industry and increased computational
power (Geladi, 1989; Rutledge and Bouveresse, 2007).

PARAFAC decomposes the array into sets of scores
and loadings, which describe the data in a more
condensed form than the original data array. It
conceptually can be compared to bilinear PCA, or rather
it is one generalization of bilinear PCA (Smilde, 1992,
Bouveresse et al., 2007). This technique is designed to
decompose higher order data tables (e.g., cubes), again to
reveal the underlying, latent phenomena for the purpose
of data analysis and predictions.

The decomposition of the data is made into trilinear
compoenents, but instead of one score vector and one
loading wvector as in bilinear PCA, each component
consists of one score vector and two loading vectors
(Bouveresse et al., 2007). Ttis common three-way practice
not to distinguish between scores and loadings as these
are treated equally numerically.

Therefore, a PARAFAC model of a three-way array 1s
given by three loading matrices, A, B and C with elements
a;, byand ¢, The trilinear model 1s found to minimize the
sum of squares of the residuals, e, in the model:

F
Ky = Z b +ey (1)
=

The adventage of the PARAFAC model 1s the
uniqueness of the solution, meaning that no restrictions
are necessary to identify estimate the model apart
from trivial variations of scale and column order
(Bouveresse et al., 2007). Therefore the true and estimated
models must coincide when the right number of
components is chosen.

Leurgans et al. (1993) have shown that unique
solutions can be expected if the loading vectors are linear
independent in two of the modes and furthermore in the
third mode the less restrictive condition is that no two
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loading vectors are linearly dependent. ITn PARAFAC, one
does not deflate the array, because the trilinear model
calculated simultaneously for all components can be
shown to fit the array better, than if the components were
calculated successively as 13 possible n PCA (Mortensen
and Bro, 2006, Leurgans ef af., 1993). As a consequence,
extracting too many components does not only mean that
noise is being increasingly modeled, but also that the true
factors are being modeled by more (correlated)
components.

In this study, calculations were performed using
Matlab R2007b (MathWorks Tnc., Massachusetts, USA)
software.

Process description: Batch fermentation refers to a
partially closed system in which most of required material
for micro-organisms growth and maintenance are loaded
before process starts. Conditions during fermentation are
continuously changmg with time leading the fermentor
being an unsteady state system (Roeva et al., 2004).

In alcoholic brewing fermentation, the micro-
organisms (biomass) concentration is the central feature
affecting the rate of growth, substrate consumption and
product formation (Trelea et al., 2004). Growth and alcohol
formation rates vary with time due to a dependence on the
present state of the batch which 1s characterised by
biomass, substrate and product concentrations, oxygen
tension and culture conditions (Roeva ef al., 2004,
Thonart, 2001).

The model developed herein is based on the
assumptions that:

*  The bioreactor 1s completely mixed.

*  The substrate 1s consumed mainly oxidatively and its
consumption can be described by Monod kinetics.

¢+  The ethanol production is assumed to be directly
linked to the biomass formation.

*  Vanations in the growth rate, ethanol production and
substrate consumption do not sigmficantly change
the elemental composition of biomass.

The rates of cells growth, substrate consumption,
ethemol formation as well as carbon dioxide concentration
in batch fermentation are commonly described according
to the mass balance (Thonart, 2001):

g
- R 2
Bt g (2)
ax
£ux (3)
a "

®_p o (4)
dt o
d—S:— ’ cX+m- X (5)
dt Y,

i3

The specific growth rate | 15 generally found to be
function of three factors: the limiting concentration of
substrate, the maximum growth rate ... and the substrate
specific constant K.

If taking account realistic aspects of the process:

*  Substrate limitation
+  Ethanel and substrate inhibition
*  Lag phase...

The model drawn is as follows:

Lag phase
d’szﬂ 1 (0.48%, %) (6)
LN M)
L (8)
Fermentation phase
XK X bl X 9
CI—— an
Sy a2
LI (13)
The parameters
" =p ﬁ (14)
Ms:”s°'1<;s+s 12
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S
= 16
K. =M K, +5 (16)
My =05y -5, (a7
Fo1._ % (18)
0.53

This model was developed by Andres-Toro et al.
(2004) who have adjusted it to laboratory
experimental data. Tt takes account three components of

scale

the biomass: lag, active and dead cells and consider the
active cells as the only fermentation agent. The model
also mcludes sugar and ethanol concentrations and two
unportant by-products of the fermentation that degrade
beer quality: ethyl acetate and diacetyl.

The system i1dentification 1s aclieved by determining
parameters like K, K, Lo, Mao- .-

RESULTS AND DISCUSSION

Qutlier determination: As described earlier, a PARAFAC
decomposition was made; scores and loadings, for time,
batches and responses, were drawn Loadings (B)
concerning batches are shown in Fig. 2 with the 95%
confidence ellipse.

The analysis of Fig. 2 shows that data were
regrouped n a set of batches inside the ellipse contour.
Unfortunately, 2 batches are 1solated from the others and
out of this ellipse. These outlier (Johnson and Wichern,
1992) batches were removed from data set prior process
identification.
Parameter identification: Identifying parameters
represents a very difficult task to elucidate. In general,
conventional methods, as simplex, are local optimisation
methods based on gradient determination; supposing that
functions must be derivable. Moreover, conventional
search techniques are often mcapable of optimising non-
linear multi-modal functions. In such cases, a random and
global search method might be required. Genetic
algorithms do not use much knowledge about the problem
to be optimised. They work with codes, which represent
the problem parameters (i.e., [, Lo K, o K, g
Ko Hap)-

The differential (6-13) and parameters (14-18)
equations and initial values were implemented in a script
under Matlab R2007b (MathWorks Inc., Massachusetts,
USA) environment. Differential equations were resolved
using Runge-Kutta 4th order algorithm at specified time
(eg.0,1,2,3,4,5... h)

0.00 0.15 0.30 0.45
Component 1

Fig. 2: Batches projection on PARAFAC components

Table 1: Initial conditions of genetic algorithms

Population size 100

Elite count 2

No. of generations 150

Fitness scaling fimction f@fitscalingrank
Selection function @selectionstochunif
Crossover function f@crossoverscattered

Mutation fimction @mutationuniform
Mutation probability 0.05

In order to optimise the batch fermentation modelled,
another script containing the necessary instructions for
the genetic algorithm toolbox has been developed. In this
script, some initial parameters needed in the genetic
algorithm toolbox were defined, e.g., mdividual number,
generation maximum number, crossover and mutation
rates, selection function. ..

Tn order to implement the genetic algorithm, the model
parameters (e.g., K, K, ., py...) have to be presented
as chromosomes. Decimal numbers ranging from 0 to 20
for the parameters values have been used to represent
this principle. Hach chromosome corresponds to a
possible solution of the objective function. Generally, this
function 15 expressed as the modelling error 1.e., the mean
square deviation between the model output and the
corresponding data obtained during the fermentation.
Therefore, the optimisation criteria are as follows:

1, =2 (Y,-Y,) = min (19)

with Y, the calculated value and Y, its corresponding
observed one, respectively for biomass, substrate and
alcohol.

Initial tests were performed using conditions shown
in Table 1.

After several and different runs, the conditions
retained are as follows:
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Fig. 3: Contour plot of Pareto solutions
Table 2: Values of parameters after identification
Parameters Values
Hao 1.2500
Heo 0.0686
Hao 1.1167
Hisg 0.5770
Hao 0.3366
K, 04515
K. 0.9347
K 0.8392

»  Population size = 50
»  No. of generations = 100

The release R2007b of Matlab integrates in genetic
toolbox the possibility of optimising multi-objective
function (Mathworks, 2007). The solutions called Parcto
solutions for the three functions (Jo,...0 Joverae AN Jucona)
are shown in Fig. 3 in contour plot.

Glancing at Fig. 3, it appears that two optimal regions
are represented concerning the J,.. criterion. But if
taking account the other criteria (ie., J;, ... and T, ),
the optimal region to consider is the lower green one
ranging from 0 to 800 for I;.,... and from 0 to 200 for
Jsuosmae The retained point (i.e., point A in the Fig. 3) that
is a good compromise of different functions minimum is
situated in this zone. This point corresponds to
parameters shown in Table 2.

In this case, the values of the criteria are:

J

Biomass

=44.982, 1., =9.724 and J,,_,, = 7.604.

Figure 4 shows the experimental and predicted values
of, respectively biomass, substrate (i.c., glucose) and
ethanol (alcohol).

These different phases were already extensively
described in literature: the lag-phase during where micro-
organisms adapt themselves to the culture medium; the
active phase or exponential phase during which the
yeasts multiply themselves exponentially, consuming
sugar and producing alcohol. The decrease of veast

307 (a)
i
= -
o 20
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|
m
1
20
I_f\
[
&
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|
w
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g
z
§
<
1
20

Time (h)

Fig. 4: Model (0) and experimental (®) data plot, (a)
Biomass, (b) Substrate and (c) Alcohol

number in suspension is due to their fall down in
fermentation tank confirming therefore, the lower
fermentation type.

The global analysis of prevision shows in Fig. 4a-c)
points out the good ability of the model to predict
successfully the wvariation of substrate consumption,
biomass concentration and alcohol production. Indeed,
the model obtained gives values very close to the
observed ones, whatever the response concerned during
the fermentation studied.

CONCLUSION

In this research, the model developed by
Andrés-Toro ef al. (2004) for beer fermentation was
proposed to fit a batch fermentation by micro-organism
mixture data. The study is accomplished through the
formulation of the identification problem as an
optimisation problem and the application of multi-
objective genectic algorithm in order to estimate the
unknown parameters from input-output space.

The simulations operated thereby, concerning the
substrate consumption, biomass concentration and the
alcohol production, validate the predictions of the genetic
algorithm formalism with a good accuracy. Therefore, the
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multi-objective genetic algorithm methodology presented
n this paper offers a cost-effective and relatively simple
alternative for process modelling and optimization.

NOMENCLATURE

L Specific growth rate (h™)

L. : Alcohol production rate (h™")

L Specific alcohol production rate (h™)
Ly Yeast settling down rate (h™")

Ly : Specific yeast settling down rate (h™")
Ly © Specific rate of latent formation (h™)
Uy - Maximum growth rate (h™)

L, : Substrate consumption rate (h™")

L, Specific substrate consumption rate th™)
L, : Yeast growthrate (h™")

L, Specific yeast growth rate (h™)

: Concentration of the alcohol (g L™")

: Fermentation mhibitor factor

: Alcohol inhibition parameter

. Yeast growth inhibition parameter

: Sugar inhibition parameter

: Maintenance constant (g g~ h™)

: Concentration of the product (g .71

: Concentration of the substrate (g T.7")

: Initial concentration of substrate (g L™")
: Concentration of biomass (g L™")

X, : Concentration of active biomass (g L™")
X © Concentration of bottom biomass (g L™
%, : Initial concentration of biomass (g L™
Xy, : Concentration of latent biomass (g L")
Yo o Yield coefficient (g g7

Y, : Yield coefficient (g g

I

B
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